【プチスパ⑨】場合の数のこぐま式解き方
「パターン」と「(具体的な)組み合わせ」を分けて考える前回のプチスパで、塗り分け問題のこぐま式解法をご紹介しました。『【プチスパ⑧】塗り分け問題のこぐま式解き方』塗り分け問題をこぐまどう解くか今回の算数の単元は場合の数ですね。私はこの分野、浜学園塾生時代は苦手分野だった記憶があります(※)が、こぐまは比較的得意なよう…ameblo.jpこの解き方のメリットとして、塗り方のパターンの問題と色の組み合わせの問題を分離して考えることで、シンプルに分かりやすく考えることができる(間違いが生じる可能性が低い)ことが挙げられることを説明しましたが、こぐまの宿題の解き方を見て、場合の数の問題では、この考え方を習得することが実は最大のポイントなのではないかということに気づかされました。くま先生はこの系統の問題は、公式で解ける典型題以外は樹形図に頼りがちで受験生時代よく撃沈していたのですが、この歳になって新しい発見をさせてもらいました。 具体的にはいくつか例題を解きながら具体的に見ていきましょう【例題】りんごが15個、みかんが3個あります。これらの果物をA, B, Cの3人で分けるとき、何通りのわけ方がありますか。これはね、みかんの分け方にまず注目するの。この時、「必ず後ろの数字は前の数字より同じか大きい」というルールでパターンの数を数えることが大事だよ。例えば、(0, 1, 2)と(0, 2, 1)は分け方としては同じでしょ。間違って重複して数えないようにするための工夫。なるほどー。じゃあ、パターンは(0, 0, 3)か(0, 1, 2)か(1, 1, 1)しかないわけだ。そう。あとはそれぞれにA, B, Cを割り当てる組み合わせを考えればいいでしょ。(0, 0, 3)の場合は3通り、(0, 1, 2)の場合は6通り、(1, 1, 1)の場合は1通りだね。だから合計3+6+1=10通り。実はこの問題も同じパターンです。【例題】上記のように円周を8等分する点をAーHとする。このうち3点を選んで三角形を作るとき、①二等辺三角形は何通りか②直角三角形は何通りか(回転して同じになる図形でも頂点が異なれば違う図形とする)これ何かラクな方法がないかなーと考えてたら、同じ方法で解けることに気づいちゃったんだよね。まずは、「どんな形があるか」を考えるの。回転して重なるものは同じ図形だからダメだよ。 そうすると、①の二等辺三角形ってこの3パターンしかないんだよね。あとは、それぞれ何通りあるかを考える。それぞれ今Aにある点がBーHに動くパターンがあり、それらが重なることはないから各8通りだよね。だから答えは8×3=24通り。そして②も同じ。直角三角形の形ってこの3つしかないよね。青と赤は似ているけれど回転して重ならないからパターンとして別になることは気をつけてね。この場合も、今Aにある点がBーHに動くパターンがあり、それらが重なることはないからそれぞれ8通りだよね。だから答えは8×3=24通りちなみに演習問題集の模範解答は①は類似の考えで解いていますが、なぜか②は別の考えで解いています。こぐま式の方が統一的に解けてエレガントだと思います。最後にもう一問。A-Eの5人が一回じゃんけんをするとき、あいこになる出し方は何通りあるかこの問題、手前に誘導問題があり、それに従うと余事象を使って解くことになります。私はそれに気づかなかったのですが、こぐまは少し考えて気づいたようで模範解答どおりに解いていましたただ、先ほどのこぐま式の考え方を使うと、ダイレクトに解くことも可能です。こぐま式だと、まずはパターンを考えるんだよね。重複を避けるために、必ずグー、チョキ、パーの順番でカウントすることにしよう。そうすると、あいこになるパターンは、全員が同じものを出すパターン(①=3通り)のほかに、②(グー、グー、グー、チョキ、パー)③(グー、グー、チョキ、チョキ、パー)④(グー、グー、チョキ、パー、パー)⑤(グー、チョキ、チョキ、チョキ、パー)⑥(グー、チョキ、チョキ、パー、パー) ⑦(グー、チョキ、パー、パー、パー)しかない。あとはそれぞれに組み合わせを考えると、②⑤⑦は120÷6=20通り、その他は120÷2÷2=30通りなので、①〜⑦の合計は3+20×3+30×3=153通りということだね。なるほどー、場合の数ってこうやって解くと間違えないんだね!そして今回のSコースカリテ、こぐまが間違えた問題をさっき見たのですが、思いっきりこの考え方使ったら一瞬でとける問題やん! おい、こぐま、どないなっとんねん(怒ると関西弁になるくま先生初めましての方はこちらもどうぞ『【初めましての方はお読みください】本ブログついて(おすすめ記事/アメンバー申請等)』1月にはじめたこのブログもだいぶフォロワーさんが増えてきました。掲載記事もだいぶ増えてきましたので、月に1度、このブログの紹介をまとめておこうと思います。…ameblo.jpブログの紹介元浜学園国語科講師で自身中学/大学/院/国家Ⅰ種/司法試験とあらゆる試験を一発合格してきた自称「受験のプロ」で、現役弁護士でもある「くま先生」が、国語が大の苦手な息子のこぐま(早稲アカから27中受予定)に伴走する受験記※主な連載記事くま式受験のテクニックプチスパ(受験マメ知識)早稲アカ校舎ランキング早稲アカ宿題実態調査早稲アカお役立ち情報/塾業界分析コラム わたしと受験