こんにちは、内科医 ひとちゃんですニコニコ

 

残念ながら、先週末は、雨模様のお天気となってしまいましたね。

 

空気の乾燥が、和らぐのは良いことなのですが・・・

 

皆さまの体調は、いかがでしょうか?

 

image

(AIで画像を作成)

 

今回の話題は、「天気痛」にしてみたいと思います。

 

「雨が降る前は膝が痛む」、また「古傷が天気を予報する」などという話は、よく聞きますね。

 

これらは、単なる迷信や気のせいだと思われてきました。

 

しかし、近年の大規模な疫学調査や、最新の神経生理学的な研究により、「天気痛(気象病)」の実態が明らかになりつつあるのですね。

神経痛(神経障害性疼痛)や関節痛が、なぜ「気圧の低下」や「気温の低下(寒さ)」によって悪化するのか?・・・をお話してみたいと思います。


長年にわたり、「天気」と「痛み」の関係を証明することは困難であったそうです。

 

なぜなら、個人の思い込み(バイアス)を排除することが難しかったからという理由からなのですね。

しかし、「スマートフォン」の登場がその壁を打ち破った・・・というのですから、驚きます。

 

英国マンチェスター大学のDixon教授らは、1万人以上の「慢性疼痛」のある患者を対象に、スマホアプリとGPSを使った画期的な調査を行いました(2019年報告)。
 

このプロジェクトは、「Cloudy with a Chance of Pain」プロジェクトと呼ばれています。その方法は、以下のようなものです。


調査方法: 患者は日々の痛みをアプリに入力し、GPS情報からその場所のリアルタイムな気象データと照合。

結果: 「気圧の低下」「高湿度」「強風」の日には、痛みが悪化するリスクが約20%増加することが判明した」(参考1)。

 

この研究により、「関節リウマチ」や「神経痛」を持つ人々が天候の影響を受けることは、統計的にも確かな事実として認められるようになったのだそうです。

 

(AIを用いて画像を作成)

 

では、「気圧が下がると痛い」といっても、体はどのようにして気圧を感じているのでしょうか?

実は、私たちの体には、「気圧センサー」が備わっていることが分かっています。

 

実は、そのセンサーがあるのは、耳の奥にある「内耳(ないじ)」なのですね。

 

「内耳」には、平衡(へいこう)感覚をつかさどる「前庭(ぜんてい)」という器官があります。

 

外気圧の変化は、まず、鼓膜(こまく)・中耳腔に伝わり、その後、アブミ骨を介して卵円窓→蝸牛・前庭(内耳)へと波として伝達されます(参考2)

 

中耳の気圧変化は、「外リンパ」と「内リンパ」の間に小さな圧差を生じさせ、前庭神経の発火パターンを変えることが示されています (参考2)

 

ちょっと、難しいのですが・・・

 

「内耳」には「気圧計」のような専用器官は確認されていませんが、内耳に存在する「有毛細胞」というものが、内耳液の圧変化・流れを高感度に感知することで、結果的に気圧変化に反応すると考えられるのだそうです。


もうひとつのセンサーが、「冷えると痛い」という現象ですが、これには、別のセンサーがあるのですが、このお話は後日の話題にしたいと思います。

 

素敵な1週間をお過ごしくださいキラキラ

 

それでは、またバイバイ

--------------------------------------------------------------------

<ブログ後記>12月23日

 

天気が悪くなる前には、「関節」などに痛みを感じたり、線維筋痛症などのある方では、体幹部などが痛むことも多いかもそれませんね。

 

その理由としては、本文内でもご紹介をしたように・・・耳は「気圧計」の役割をしており、「気圧」の変化を敏感にキャッチできるからという理由になるわけです。

そのセンサーが存在するのは、耳の奥にある「内耳(ないじ)」という部分となりますね。


「内耳」には平衡感覚をつかさどる「前庭(ぜんてい)」という器官があります。

グルグルとまわるような回転性の目眩(めまい)が生じたときに、私を含めた医療者は、この「前庭」部分の炎症があるのではないか?・・と疑ったりもするわけです。


この「前庭」という器官は。次のような働きをすることが分かっています

1)気圧の感知

台風や雨雲が近づき気圧が下がると、内耳の気圧センサーがその変化を感知します。

2)交感神経の興奮

センサーからの信号が脳に伝わると、自律神経のバランスが崩れ、「交感神経」が過剰に興奮することが知られています(参考3)。

3)痛みの増幅

交感神経が興奮すると、血管が収縮したり、痛みを感じる神経内で「ノルアドレナリン」 という物質が作用して、普段より痛みを強く感じるようになります。

動物実験では、神経障害を持つラットを「低気圧環境(台風の接近程度)」に置くと痛がる行動が増えますが、内耳を破壊して機能をなくしたラットでは、気圧が下がっても痛みが悪化しないことが確認されています(参考4)。

 

これらのことは、「内耳」こそが天気の変化を「痛み」に変換するスイッチであることを示していると考えられています。

ところで、「気温が下がる」、つまり、「空気が冷えると痛い」という現象は、どのようなメカニズムがあると考えられているのでしょうか?

 

この現象には、「温度を感じる特殊なタンパク質(イオンチャンネル)が関わっているとされています。
 

実は、私たちの神経には、温度を感じ取るセンサーとなる「タンパク質」が存在することが分かっています。

そのタンパク質が、「TRPM8(ティーアールピーエムエイト)」と「TRPA1(ティーアールピーエーワン)」というものになります。

TRPM8

26℃以下の涼しさや、ミント(メントール)のひんやり感を感じるセンサー

TRPA1 

: 17℃以下の冷たさや、ワサビのツーンとする刺激を感じるセンサー

などと説明されています。
 

神経が損傷(そんしょう)を受けると、これらのセンサーの量が増えたり、感度が過敏になったりすることが知られています(参考5)。

その結果、健常な人なら「少し涼しい」と感じる程度の気温低下でも、神経痛患者さんの脳には「痛い!」という信号として伝わってしまうのです(アロディニア現象)。

さらに血流の低下によって「酸欠」の状態になることが、「神経痛」などの痛みを増強させることが知られています。

寒さを感じると、体は熱を逃がさないように「血管」を収縮させます。

神経に栄養を送る微細な血管も収縮するため、傷ついた神経が酸素不足(虚血)になり、「発痛物質」が蓄積して痛みが悪化するとされています。

このようにみてきますと・・・天気の悪化により、痛みの増悪することは、気のせいではないとも言えますね、

日々のお天気が、主に「神経痛」の状態に影響を与えるのは、「内耳」による気圧感知と「交感神経の興奮」、そして「低温による神経過敏と血流障害」という明確な生理学的メカニズムが存在するからということになりますね。

 

今後、医療が発展していくことにより、これらの問題を解決して、

「神経痛」などの痛みを改善させるは、十分に可能なことなのかも

しれませんね。

 

今回も最後までお付き合いくださり

誠にありがとうございましたお願い

 

参考)

1)NP J Digit Med. 2019 Oct 24:2:105.

How the weather affects the pain of citizen scientists using a smartphone app  

William G Dixonら

 

2)Rep Prog Phys. 2014 Jul;77(7):076601. 

The physics of hearing: fluid mechanics and the active process of the inner ear  

Tobias Reichenbachら

 

3)Neurosci Lett. 1999 Apr 30;266(1):21-4.
Lowering barometric pressure aggravates mechanical allodynia and hyperalgesia in a rat model of neuropathic pain
J Satoら

 

4)Eur J Pain. 2010 Jan;14(1):32-9. 

The inner ear is involved in the aggravation of nociceptive behavior induced by lowering barometric pressure of nerve injured rats

Megumi Funakuboら

 

5) RP Ion Channel Function in Sensory Transduction and Cellular Signaling Cascades.(Chapter13)
RPM8: The Cold and Menthol Receptor
David D.ら

 

     (日比谷ミッドタウンのクリスマスツリー2025)

 (筆者撮影)

 =================================

 

理事長・ 院長  

小笠原  均  (Hitoshi Ogasawara)   

医学博士, 内科医

(総合内科、リウマチ専門医)

(新潟大医学部卒)

(業績)

 

 

image

 

 Instagram

 

<クリスマス Music プレイリスト> 

 

<今週、なんとなく聞いてみたい曲> 

 

 

  =====================

<JTKクリニックからのお知らせ>

 

◯Zoomを用いた遠隔医療相談を始めました(内科関連疾患)

 

◯外来診療は予約制をとり、待ち時間が生じないようにしています。

 

◯ ダイエット漢方製剤は、オンライン診療でも可能です。

◯ 線維筋痛症に対するノイロトロピン等の点滴療法、トリガーポイント注射を行なっております。(セカンドオピニオン診療も可)

 

自分の皮下脂肪から組織を採取し、「間葉系幹細胞」を培養して、自分自身の組織内に投与する「幹細胞治療」を開始しました。

 

<JTKクリニック 所在地>

〒102-0083

東京都千代田区麹町4-1-5麴町志村ビル2階

電話 03-6261-6386

Mail:info@jtkclinic.com

 =================================

こんにちは、内科医 ひとちゃんですニコニコ

 

寒さを感じる休日の午後となっています。

昨夜から降り出した雨は、シトシトと振り続いているようです。

 

「炉辺の詩人」5人組の1人として知ら米国のヘンリー・ワズワース・ロングフェローは、次のような言葉を残しています。

 

 "The best thing one can do when it's raining is to let it rain." 

 

雨が降っている時にできる最善のことは、雨に降らせておくことだ

 

確かに、こんな冷たい雨の降る日はジタバタしても仕方がないと思ってしまいますね。

 

皆さまの体調は、いかがでしょうか?

 

(AIを用いて作成)


抗老化医療の分野において注目を集めている「ニコチンアミドモノヌクレオチド(NMN)」や「ニコチンアミドアデニンジヌクレオチド(NAD+)」が、「ホルモン」の産生にどのような影響をにどのような影響を与えますか?・・・という質問をされることが多くなりました。


そこで、今回は「NMN」や「NAD+点滴」がホルモンに与える影響について、現時点で分かっていることについて、お話をしてみたいと思います。

まず、「NMN」そして,「NAD+」とは、どのようなものであるか・・・について、復習(ふくしゅう)をしておきたいと思います。
 

「NMN」は、生体内でエネルギー産生や老化制御に不可欠な補酵素「NAD+」を作るための重要な中間代謝産物(前駆体)であると言え

ます。

 

 

「NAD+」は、エネルギー産生(ATP合成)とサーチュイン遺伝子(SIRT1.~7.)の活性化を促し(うながし)、DNA修復、エピジェネティックな遺伝子制御など、細胞の生存に不可欠な補酵素であると考えらえれています(参考1)。

加齢に伴い、体内の「NAD+レベル」は、さまざまな臓器において

低下し、これが代謝機能不全や加齢関連疾患の要因となることが示されています(参考2)。
                                    

image

 (AIを用いて作成)

 

「ホルモン」分泌能低下もまた、「老化」の特徴のひとつといえます。

近年の研究により、「NAD+」の代謝と内分泌系の間に密接な相互作用が存在することが明らかになりつつあるというのですね。

そこで、今回は、「NMN」の投与、および「NAD+」の点滴が、性ホルモン、代謝ホルモン、および、サーカディアンリズム(概日リズム)関連ホルモンに及ぼす影響について、お話をしてみたいと思います。

「NAD+」は、「サーチュイン(SIRT1-7)遺伝子」を活性化させる補酵素として機能しますね。


「サーチュイン遺伝子」は、「長寿遺伝子」とも呼ばれ、ヒストンや転写因子の脱アセチル化を通じて遺伝子発現を制御し、ホルモン受容体の感受性やホルモン合成酵素の活性を調節していることが知られています(参考3)。

特に「サーチュイン1遺伝子(SIRT1)」は、核内受容体(エストロゲン受容体、アンドロゲン受容体、PPARsなど)の活性調節に関与しており、標的臓器におけるホルモン感受性を維持するために重要で
あることが分かっています(参考4)。
 

では、具体的に各種のホルモンには、どのような影響があると考えられているのでしょうか?

まず、「女性ホルモン」や「卵巣機能」への影響はについて、みてみたいと思います。

女性の生殖機能低下は、「卵母細胞」の質と数の減少に起因(きいん)すると考えられています。

 

「卵母細胞」とは、卵子のもととなる細胞ですね。

 

動物実験では、「NMN」投与により卵巣内の「NAD+」レベルが回復し、卵子の質や排卵数、受精率、生児獲得率が改善したと報告されています(参考5)。

 

ヒトでは、若年女性の卵巣予備能低下(DOR)に対するNMN補給は、卵胞発育や受精率、妊娠率の向上に寄与した臨床報告もあります(参考6)。

 

マウスの卵巣内の「NAD+」濃度が、加齢とともに低下しますが、「NMN」投与によりこの濃度が著しく回復し、卵巣萎縮を防止するとともに排卵卵子の質と量を向上させることが明らかになったとする報告もあります(参考7)。


以上のように「NMN」や「NAD+点滴」は、卵巣機能や卵子の質、代謝改善に寄与する可能性が示唆されていますが、エストロゲンやプロゲステロンなどの女性ホルモン分泌への直接的な影響は現時点で十分に証明されていないのが、現状のようです。

では、テストステロンなどの男性ホルモンに対しては、どうなのでしょうか?

現時点で、NMNやNAD+投与が、テストステロン分泌量や血中濃度に

影響を与えるというエビデンスは存在しないようです。

 

多くの研究は代謝改善や精子形成への影響に焦点を当てており、ホルモン分泌そのものへの作用は十分に検証されていない可能性があるようです。

 

では、最後に「甲状腺ホルモン」については、どうでしょうか?

 

現在の主要な研究では、NMNやNAD+投与が甲状腺ホルモン(T3、T4、TSHなど)の分泌や機能に直接影響を与えたという報告は見当たりませんでした。

 

今回は、「NMN」や「NAD+」が、ヒトのホルモン分泌に良い影響を

与えるに違いない・・・と気合いを入れて、多くの論文から。その証拠(しょうこ)を見つけようとしたわけですが、残念ながら、そのような報告は見つかりませんでしたえーん

 

 

しかしながら・・・これは、面白いと感じたホルモンがありました。

それは、「糖尿病」の発症に関わる「インスリン」というホルモンであるのですが、このお話は、後日の話題にしたいと思います。

 

素敵な1週間をお過ごしくださいキラキラ

 

それでは、またバイバイ

--------------------------------------------------------------------

<ブログ後記>12月16日

 

今回は、「NMN」や「NAD+」の投与は、身体のホルモンにどのような影響を与えるかについて、お話をさせていただきました。

 

思っていたよりも、「ホルモン」に影響を与える可能性が少ないことに驚かれたのではないでしょうか?

 

一方で、2型糖尿病に関する「インスリン」の分泌には影響を与える可能性があることについて、お話をしてみたいと思います。

 

その前に「インスリン」とは、どのようなホルモンであるのかについて、お話をしておきたいと思います。


「インスリン」は、血液中のブドウ糖(血糖)を細胞に取り込ませることで血糖値を下げる働きをします。

また、余分なブドウ糖を肝臓や筋肉でグリコーゲンとして蓄えたり、脂肪細胞で脂肪として蓄えたりする働きも持っています。

この「インスリン」を分泌するのが、膵臓にある「膵β(ベータ)細胞」ということになるわけです。

 

「膵β細胞」から分泌された「インスリン」は血液に乗って全身の細胞(特に筋肉細胞や脂肪細胞)に運ばれます。そして細胞表面にあるインスリン受容体に結合します。

この結合がスイッチとなり、細胞は血液中のブドウ糖を取り込み、エネルギーとして利用したり貯蔵したりします。

 

このインスリンの作用によって、私たちの体はエネルギー源であるブドウ糖を効率よく利用し、血糖値を一定の範囲に保つことができるというわけですね。
 

では、「膵β細胞」のインスリン分泌に対して、「NMN」や「NAD+」の効果は、どのようなものであるのか・・・をみてみると、次のようになります。

よく「インスリン分泌能」という言葉を耳にすることがあるかもしれませんが、これは「膵臓β細胞」がどれだけインスリンを作り出し、分泌する能力を持っているかを示すものです。

この「膵臓β細胞」の「インスリン分泌能」は、多くの研究で加齢に伴い低下することが報告されています。

また同時に「膵臓β細胞」が「老化細胞」になることによっても「インスリン分泌能」が低下することが報告されています。

実際に・・・加齢に伴う「膵臓β細胞」の細胞老化は、「膵臓β細胞」の機能低下の根底にある可能性があり、「老化細胞」を除去することでインスリン分泌が改善され、2型糖尿病の予防につながる可能性も指摘されています(参考8)

そして、「老化細胞」が多く出現しないとしても、加齢により「膵臓β細胞」のインスリン分泌低下が生じることも報告されています

(参考9)。

さらに加齢により「膵β細胞」のNAD+レベルやNAD+関連酵素の発現が低下し、「インスリン分泌能」が減弱することも知られています。

では、 加齢によりインスリン分泌が低下した「膵β細胞」に対して、「NMN」や「NAD+」の投与は有効なのでしょうか?

加齢に伴いNAD+合成酵素(NAMPT, NADKなど)の発現が低下し、
NAD+枯渇 → SIRT1活性低下 → インスリン分泌障害
という経路があることが示唆されています(参考10)

このために「NAD+」の投与により、NAD+/AMPK/SIRT1/HIF-1経路という部分を回復させることにより、「膵β細胞」の機能障害を改善することが確認されています。

このことは、膵β細胞機能障害、および、2型糖尿病の治療に対する潜在的な治療効果が期待できることが示されています。

 

また、「NMN」にも同様の働きがあることが報告されています(参考11)。

補足になりますが・・・HIF-1とは、細胞膜に存在し、血液中から細胞内へグルコースを運び込むタンパク質となりますね。

実際に・・・2型糖尿病のメインの治療薬とはなりえないものの。·身体活動と「SIRT1」および「SIRT3」の活性化は、特に高齢者において、グルコースの恒常性を維持し、2型糖尿病の予防に役立つ可能性があることが指摘されています(参考12)

ちなみに・・・サーチュイン3(SIRT3)遺伝子は、軽度のカロリー制限や空腹状態がサーチュイン遺伝子のスイッチを入れる刺激となります。


サーチュイン3(SIRT3)遺伝子は、本来は、ミトコンドリアの保護作用を持つことが知られていますが・・・実は、サーチュイン遺伝子のなかで最も「活性酸素(ROS)」を除去し、高い「抗酸化力」を持つとされるとされます。


なぜ、「膵β細胞」からのインスリン分泌に・・・なぜ、「ミトコンドリア」なのか?・・・と思われる方もいらっしゃるかもしれませんね、

実は、「膵β細胞」におけるインスリン分泌プロセスには高いエネルギーが要求されることが知られています。

生体の中でのエネルギーといえば、もちろん、「ATP(エーティーピー)でして、このATPを作るのが「ミトコンドリア」
であるということになるわけですね。

実際に、動物実験では、加齢に伴い膵β細胞のNAD+合成能が低下し、これがグルコース応答性インスリン分泌(GSIS)の不全を招くことが示されています(参考13)。

ならば・・・「NMN」を日常的に服用してれば、2型糖尿病になりにくいのではないか?・・・と思う方がいらっしゃるかもしれませんね。私も実は、そう思いました。
 

しかし、残念ながら、「NMN」の投与は、老齢マウスのインスリン分泌能を回復させたが、ヒトにおいては、健常者に対するNMN投与が血糖値やインスリン分泌に与える影響は限定的であり、耐糖能異常を有する集団においてのみ有益である可能性が高いとも報告されているのですね(参考14)。

「NMN」や「NAD+」については、一時のブームが去ったような気も致します。

実際に「NMN」や「NAD+」の投与は、当初期待されたようなメリットを示せなかったなどという論文もあります。

また、動物実験とヒトでの実験結果が、混在しているという事実もあるわけです。

 

しかしながら、細胞の機能を支えるエネルギー(ATP)産生をアップできる点、サーチュイン1遺伝子(SIRT1)が、壊れたDNAを修復することや、「サーカディアンリズム(概日リズム)」を調整すること、

また、サーチュイン3遺伝子(SIRT3)が、強い抗酸化作用を発揮すること、そして、上記のような2型糖尿病の予防や血糖値の安定化などの効果をひとつひとつ見てみますと・・・ただ、元気になることや

長寿を実現される・・・とは違う、大きなメリットがある可能性

があるのではないか?・・・なんて、思えたりもしますね。

 

こん顔も最後までお付き合いくださり

誠にありがとうございましたお願い

 

参考)

1)Nat Rev Mol Cell Biol. 2021 Feb;22(2):119-141.
NAD+ metabolism and its roles in cellular processes during ageing
Anthony J Covarrubiasら

 

2)Trends Cell Biol. 2014 Aug;24(8):464-71.
NAD+ and sirtuins in aging and disease
Shin-ichiro Imaiら

 

3)Nat Rev Mol Cell Biol. 2012 Mar 7;13(4):225-238.
 Sirtuins as regulators of metabolism and healthspan
Riekelt H Houtkooperら

 

4)Ann Med. 2011 May;43(3):198-211.
Sirtuin 1 in lipid metabolism and obesity
Thaddeus T Schugら

 

5)Biogerontology. 2022 Apr;23(2):237-249. 

Multispectral autofluorescence characteristics of reproductive aging in old and young mouse oocytes

 Jared M Campbellら

 

6)Human Reproduction, Volume 40, Issue Supplement_1, June 2025, deaf097.217.
O-217 Nicotinamide mononucleotide-a NAD+ precursor- a new hope for rejuvinating fertility outcome in young infertile women with diminished ovarian reserve- a retrospective analysis 
D Sen Shanaら
 

7)MedComm (2020). 2024 Sep 30;5(10):e727.
Nicotinamide mononucleotide supplementation rescues mitochondrial and energy metabolism functions and ameliorates inflammatory states in the ovaries of aging mice

inghui Liangら

 

8)Diabetologia. 2020 Oct;63(10):2022-2029.
Functional changes in beta cells during ageing and senescence
Cristina Aguayo-Mazzucatoら

 

9)Diabetologia. 2016 Jan;59(1):161-169.
Role of microRNAs in the age-associated decline of pancreatic beta cell function in rat islets
Ksenia Tugayら

 

10)Aging Cell. 2025 Apr;24(4):e70037.
 Downregulation of NAD Kinase Expression in β-Cells Contributes to the Aging-Associated  Decline in Glucose-Stimulated Insulin Secretion
Guan-Jie Liら

 

11)Int J Mol Sci. 2024 Sep 30;25(19):10534.
Nicotinamide Mononucleotide (NMN) Ameliorates Free Fatty Acid-Induced Pancreatic β-Cell Dysfunction via the NAD+/AMPK/SIRT1/HIF-1α Pathway
Yan Wangら

 

12)Int J Mol Sci. 2019 Sep 25;20(19):4748.
 Proposed Tandem Effect of Physical Activity and Sirtuin 1 and 3 Activation in Regulating Glucose Homeostasis
Francesca Pacificiら

 

13)Aging Cell. 2008 Jan;7(1):78-88.
 Age-associated loss of Sirt1-mediated enhancement of glucose-stimulated insulin secretion in beta cell-specific Sirt1-overexpressing (BESTO) mice
Kathryn Moynihan Ramseyら

 

14)Curr Diab Rep. 2024 Nov 12;25(1):4.
Effects of Nicotinamide Mononucleotide on Glucose and Lipid Metabolism in Adults: A Systematic Review and Meta-analysis of Randomised Controlled Trials
Feng Chenら

 

 

(KITTEビルのクリスマスツリー2025)

 (筆者撮影)

 =================================

 

理事長・ 院長  

小笠原  均  (Hitoshi Ogasawara)   

医学博士, 内科医

(総合内科、リウマチ専門医)

(新潟大医学部卒)

(業績)

 

 

image

 

 Instagram

 

<クリスマス Music プレイリスト> 

 

<今週、なんとなく聞いてみたい曲> 

 

 

  =====================

<JTKクリニックからのお知らせ>

 

◯Zoomを用いた遠隔医療相談を始めました(内科関連疾患)

 

◯外来診療は予約制をとり、待ち時間が生じないようにしています。

 

◯ ダイエット漢方製剤は、オンライン診療でも可能です。

◯ 線維筋痛症に対するノイロトロピン等の点滴療法、トリガーポイント注射を行なっております。(セカンドオピニオン診療も可)

 

自分の皮下脂肪から組織を採取し、「間葉系幹細胞」を培養して、自分自身の組織内に投与する「幹細胞治療」を開始しました。

 

<JTKクリニック 所在地>

〒102-0083

東京都千代田区麹町4-1-5麴町志村ビル2階

電話 03-6261-6386

Mail:info@jtkclinic.com

 =================================

こんにちは、内科医 ひとちゃんですニコニコ

 

暦(こよみ)の二十四節気では・・12月7日が、では「大雪(たいせつ)」のスタートとなりますね。

 

本格的な寒さの到来(とうらい)を前にして、多少暑くても、夏の終わり頃の気候がよかったなあ〜などと思います。

 

イギリスの作家・学者であるC.S.ルイスは以下のような言葉を残しています。

"We all want progress, but if you're on the wrong

road, progress means doing an about-turn and

walking back to the right road; in that case, the man

who turns back soonest is the most progressive."

 

その訳は、

 

「私たちは皆、進歩を望んでいる。しかし、もし間違った道にいるのなら、進歩とは、回れ右をして正しい道へ戻ることだ。その場合、最も早く引き返した者が、最も進歩的な(最も早く目的地に着く)

人間なのだ。」

 

という言葉を思い出します。

 

C.S.ルイスは、7巻からなるファンタジー小説「ナルニア国物語」の作者ですね。

残念ばがら・・・「冬の寒さ」に遅ればせばがら気がついて、夏に逆戻りしたいと思っても、当然ながら無理ですよね。

 

皆さまの体調は、いかがでしょうか?

 

(AIを用いて作成)

 

前回は「なぜ、加齢に伴い免疫力が低下する理由」について、お話をそました。

 

その後、「ナチュラル・キラー細胞(NK細胞)」が出てこなかったけど、「NK細胞」を含めれば、「老化細胞」を減らすことができるし、

「老化細胞」から放出される炎症性サイトカインも減少するから

「老化」のスピードは低下するはずだよね・・・と友人から質問があったわけです。

 

そのとおりなのですが・・・実は、彼の話には、「NK細胞」の弱点(じゃくてん)を見落としています。

 

そこで、今回の話題は、『NK細胞は、本当に老化細胞を破壊できるのか?』をお話して見たいと思います。

 

結論を先に言ってしまいますと・・・「NK細胞」が破壊すること、正確に言いますと、「アポトーシス(プログラムされた細胞死)」を起こさせることになりますが・・・「癌細胞」、「ウイルス感染細胞」、そして、「老化細胞」となるため。結論としては「老化細胞」を破壊することは、可能であるということになります。

 

 (AIを用いて作成)

 

しかしながら、「NK細胞」には、致命的(ちめいてき)な弱点がありましたね。

下の図は、「NK細胞」の活性(かっせい)を示しています。「活性」とは、「NK細胞」が持つ破壊力(はかいりょく)ということになりますね。

 

図を見ますと・・・「NK細胞」の活性は、男女とも20歳前後が最も高く、その後は加齢とともに低下していくことが分かっています。

 

なので、単純に血液中の「NK細胞」だけに「老化細胞」の破壊・除去を期待するのは・・・ちょっと難しいのではないかと思います。

 

ちょっとした方法を使えば、別ですが・・・となるのですね。

 

           (図はお借りしました)

 

では、「NK細胞」の活性を年齢に関わらず、若い時のような「活性」を取り戻す方法をご紹介する前に「老化細胞」について、少し整理をしてみたいと思います。

 

まずは、「老化細胞」の蓄積と、それに伴う(ともなう)組織変化について、お話をしてみたいと思います。

 

まずはヒトの体内にある「ゾンビ細胞」と呼ばれる「老化細胞」とは、どのようなものなのでしょうか?

 

「老化細胞」の定義(ていぎ)と言っても良いかもしれませんね。、

 

1961年、レナード・ヘイフリックらは、正常な細胞には「分裂回数の限界」があることを発見しました(ヘイフリック限界)(参考1)。

 

 

しかし、細胞老化は単なる「分裂の停止」ではなかったのですね。

 

 

「老化細胞」の一部は、アポトーシスを起こし、破壊されるわけですが、残りは、死ぬわけではなく、代謝的に活発な状態で組織内に留まり続け、周囲に悪影響を及ぼすタンパク質群を撒き散らすようになります。これはまさに、死なずに害を及ぼす「ゾンビ細胞」のような振る舞いであるとされているわけです(参考2)。


 

では、なぜ、「老化細胞」できるのか?・・・という問いになりますと・・・これは、分裂回数が「ヘイフリックの限界」に達した(たっした)からというだけではありません。

 

もちろん、「分裂の限界」から「老化細胞」になります。

以前にもブログ内でお話をしましたが・・・まとめてみますと次のようになります。

細胞老化の主な要因

【1】テロメア短縮-(複製老化)

分裂のたびに染色体末端が短くなり、限界に達すると細胞は分裂を止めます(複製老化)(参考3)。

 

 

【2】DNA損傷

放射線や活性酸素による遺伝子の傷が修復できない場合、細胞はがん化を防ぐために自ら老化モードに入ります(参考4)。

 

 

【5】がん遺伝子の活性化ー(がん遺伝子誘導性老化)

RASなどの「がん遺伝子」が異常活性化した場合も、強制的に細胞老化が誘導されます(参考5)。

 


となるわけですね。

つまり、細胞が癌化してしまう遺伝子異常が生じてしまったことから、まだ、分裂回数が残っているにも関わらず、「老化細胞」になることもあるわけです。

 

つまり、がん化を防ぐための防御反応として「細胞老化」、つまり「老化細胞」になることもあるのですね。

 

つまり、すべての「老化細胞」を「正常細胞」に戻す試み(こころみ)が、いかにナンセンスな話かが理解できますよね。

 

なぜなら・・・「老化細胞」の中には、「癌細胞」にならないように

分裂を停止したものもあるわけですのでね。

 

わざわざ、「癌細胞」を作り出すことは、デメリットしかありませんよね。

このお話の続きは、後日の話題にしたいと思います。

 

素敵な1週間をお過ごしくださいキラキラ

 

それでは、またバイバイ

---------------------------------------------------------------------

<ブログ後記>12月9日

「老化細胞」については、本文内でお話をしました。
ヒトは「老化細胞」の存在を自覚を自覚はできないのですが、多くの臓器を構成する細胞が「老化細胞」になるとされています。

例えば、皮膚真皮層に存在する「線維芽細胞」も老化することが知られています。

老化した「線維芽細胞」は、細胞周期が停止し、炎症性サイトカインやマトリックス分解酵素(MMPs)などを分泌(SASP)を起こします。

これにより、コラーゲンや弾性線維の分解が促進され、真皮の構造が劣化します。さらに真皮構造が崩れ、慢性的な微小炎症が続くことで、しわ・たるみ・ハリ低下などの変化として現れるとされています(参考6)。

また、老化線維芽細胞は、周囲の若い線維芽細胞にも悪影響を及ぼし、コラーゲンやエラスチンの発現を抑制することも確認されています(参考7)

このように「老化細胞」の影響は、皮膚線維芽細胞の影響が見えやすい部分となっているために、
皮膚の抗老化医療においても、老化細胞の除去やSASP抑制、抗酸化・抗炎症治療が、皮膚老化の新たな治療戦略として注目されているわけです(参考7)

これを破壊するために自分自身の「ナチュラル•キラー細胞(NK細胞)」を用いることが可能であるというわけですね。
「NK細胞」は、ウイルス感染細胞やがん細胞を攻撃するリンパ球です。T細胞のように事前の教育(抗原感作)を必要とせず、異常な細胞を見つけると即座に攻撃を開始できるため、「ナチュラルキラー(生まれつきの殺し屋)」と呼ばれます(参考8)。

「NK細胞」は、アクセルとブレーキのバランスで攻撃を決定することが知られています。ブレーキとアクセルは、以下のようなものになります。

1.ブレーキ(抑制性受容体)
正常な細胞が持っている「自分ですよ」という身分証(MHCクラスI分子)を   確認すると、攻撃を中止します(参考9)。正常な細胞はすべて.MHCクラスI分子を表面に出しているために

「NK細胞」には、攻撃されません。

では、「老化細胞」では、「MHC classI抗原」が表出されなくなるのでしょうか?

その答えは・・・「No」でして、「老化細胞」のMHCクラスI発現増加は、インターフェロン経路の活性化やp53経路の関与によって誘導されることが知られています。


「老化細胞」のMHCクラスI発現増加は、免疫機構荷よる「老化細胞除去」を妨げている可能性があると考えられています(参考10)


2.アクセル(活性化受容体):
 

異常な細胞の表面に出現する「ストレス分子(MICA/BやULBPなど)」をNKG2D受容体などが感知すると、「NK細胞」の攻撃スイッチが入ることが分かっています(参考11)。

そして、「老化細胞」の表面には、老化誘導(複製老化、オンコジーン誘導、DNA損傷など)により、MICAやULBP2などのNKG2Dリガンドがヒト線維芽細胞などの老化細胞表面で一貫して高発現します。

本文内でお話したように「老化細胞」の誘因にかかわらず、すべての「老化細胞」にMICAやULBP2などのNKG2Dリガンドが、高発現しているわけです(参考12)。

つまり、「老化細胞」は、「自分ですよ」という身分証(MHCクラスI分子)を表面に出して、NK細胞の攻撃から逃げようロスる性質があるものの、その表面には、はMICA/BやULBPなどのNKG2Dリガンドを表面に高い発現し、これがNK細胞によって、排除されることになるわけです。

その他にも、老化細胞は、NK細胞に対して「私を攻撃してくれ」というシグナルを出しています。
 

それは、次のようなものがあるとされています。

 (A) 危険信号の提示:
「老化細胞」は、DNA損傷応答の結果として、「NK細胞」のアクセルを踏ませるリガンド(MICA/B、ULBPなど)を細胞表面に大量に発現します(参考13)。

 (B)身分証の隠蔽 (MHC classI 抗原の低下)
 一部の「老化細胞」では、NK細胞のブレーキとなるMHCクラスI分子の発現を低下させ、攻撃を受けやすくなっていることも知られています。

(C)接着分子の増加:、
「老化細胞」ではICAM-1のmRNAおよび細胞表面発現が大きく増加することが示されています。これは酸化ストレスの増加と関連しており、「老化細胞」表面では、はICAM-1という接着分子を増やし、NK細胞が物理的に結合しやすい状態を作るとされ、より、「NK細胞」により、「老化細胞」は破壊されることが確認されています。
ICAM-1の発現が高いターゲット細胞は、NK細胞とのコンジュゲート形成(接着)が増加し、細胞傷害感受性も高まります(参考14)。

いかがでしょうか?「老化細胞」が「NK細胞」のより、除去されるのがお分かりいただけたでしょうか?

 

今回も最後までお付き合いくださり

誠にありがとうございましたお願い

 

参考)

1)Exp Cell Res. 1961 Dec:25:585-621.

The serial cultivation of human diploid cell strains

L HAYFLICKら
 

2)PLos Biol

Clinical Trial. 2008 Dec 2;6(12):2853-68.

Senescence-associated secretory phenotypes reveal cell-nonautonomous functions of oncogenic RAS and the p53 tumor suppressor

Jean-Philippe Coppeら

3)Nature. 2003 Nov 13;426(6963):194-8.

 A DNA damage checkpoint response in telomere-initiated senescence

Fabrizio d'Adda di Fagagnaら

 

4)Nature. 2006 Nov 30;444(7119):638-42. 

Oncogene-induced senescence is a DNA damage response triggered by DNA hyper-replication 

Raffaella Di Miccoら

 

5) Cell. 1997 Mar 7;88(5):593-602. 

Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a 

M Serranoら

 

6)Int J Mol Sci. 2019 Apr 29;20(9):2126.
Molecular Mechanisms of Dermal Aging and Antiaging Approaches
Jung-Won Shinら

 

7)Cells. 2022 Nov 24;11(23):3749.
Aging Fibroblasts Adversely Affect Extracellular Matrix Formation via the Senescent Humoral Factor Ependymin-Related Protein 1
Kento Takayaら

 

8)Eur J Immunol. 1977 Sep;7(9):655-63.
Evidence for a similar or common mechanism for natural killer cell activity and resistance to hemopoietic grafts
R Kiesslingら

 

9)Nature . 1986 Feb;319(6055):675-8.
 Selective rejection of H-2-deficient lymphoma variants suggests alternative immune defence strategy
K Kärreら

 

10)Annu Rev Immunol . 2013:31:413-41.
 Regulation of ligands for the NKG2D activating receptor
David H Rauletら

 

11)Aging (Albany NY) . 2016 Feb;8(2):328-44.
NKG2D ligands mediate immunosurveillance of senescent cells
Adi Sagivら

 

12)Nature. 2005 Aug 25;436(7054):1186-90.
The DNA damage pathway regulates innate immune system ligands of the NKG2D receptor
Stephan Gasserら

 

13)Nat Commun. 2019 Jun 3;10(1):2387.
Senescent cells evade immune clearance via HLA-E-mediated NK and CD8+ T cell inhibition
Branca I Pereiraら

 

14)Cell Death Dis. 2021 Jan 18;12(1):94.
 Hsa_circ_0007456 regulates the natural killer cell-mediated cytotoxicity toward hepatocellular carcinoma via the miR-6852-3p/ICAM-1 axis
Min Shiら

 

(東京ミッドタウンのイルミネーションと月)

 (筆者撮影)

 

 =================================

 

理事長・ 院長  

小笠原  均  (Hitoshi Ogasawara)   

医学博士, 内科医

(総合内科、リウマチ専門医)

(新潟大医学部卒)

(業績)

 

 

image

 

 Instagram

 

<クリスマス Music リスト> 

 

<今週、なんとなく聞いてみたい曲> 

 

 

  =====================

<JTKクリニックからのお知らせ>

 

◯Zoomを用いた遠隔医療相談を始めました(内科関連疾患)

 

◯外来診療は予約制をとり、待ち時間が生じないようにしています。

 

◯ ダイエット漢方製剤は、オンライン診療でも可能です。

◯ 線維筋痛症に対するノイロトロピン等の点滴療法、トリガーポイント注射を行なっております。(セカンドオピニオン診療も可)

 

自分の皮下脂肪から組織を採取し、「間葉系幹細胞」を培養して、自分自身の組織内に投与する「幹細胞治療」を開始しました。

 

<JTKクリニック 所在地>

〒102-0083

東京都千代田区麹町4-1-5麴町志村ビル2階

電話 03-6261-6386

Mail:info@jtkclinic.com

 =================================

こんにちは、内科医 ひとちゃんですニコニコ

 

日中間の問題で、いきなり東京の街の賑わい(にぎわい)が消えてしまい、街はイルミネーションで彩られて(いろどられて)いるわけですが・・・少し、寂しい12月となりそうです。

 

イギリスの哲学者・作家である「ジェームズ・アレン」が

彼の著書『原因と結果の法則(AS A MAN THINKETH)』の中で、次のような言葉を述べています。

 

"The more tranquil a man becomes, the greater is his success, his influence, his power for good. Calmness of mind is one of the beautiful jewels of wisdom.

人は心が穏やか(おだやか)になればなるほど、その成功、影響力、そして善をなす力は大きくなる。

心の平安を保つことは、知恵が生み出す美しい宝石のひとつである。

 

彼の著書である「原因と結果の法則」は、ナポレオン・ヒル、デール・カーネギー、オグ・マンディーノなど、現代成功哲学の祖たちがもっとも影響を受けた伝説のバイブル、『AS A MAN THINKETH』。

 

聖書に次いで一世紀以上ものあいだ多くの人々や指導者に読まれつづけている驚異的な超ロング・ベストセラーなのですね。

 

皆さまの体調は、いかがでしょうか?

 

            (AIを用いて作成)

 

さて、今回は「なぜ、加齢に伴い免疫力は低下していくのか?」という話題を掘り下げて、少し詳しく(くわしく)お話をしてみたいと思います。

 

現代医療の進歩により、私たちはかつてないほどの「長寿」を享受(きょうじゅ)していると言えますよね。

 

しかし、その一方で、臨床現場において厳然(げんぜん)として存在する事実があります。

 

それは「感染症による死亡リスクは、加齢とともに指数関数的に上昇する」という現実です。インフルエンザ、肺炎、そして記憶に新しいCOVID-19パンデミックにおいても、犠牲者の多くは高齢者でしたよね。

なぜ、若い頃なら数日で治る風邪(かぜ)が、高齢者にとっては命取りになるのでしょうか。
 

この現象(げんしょう)は、一般に言われる「体力の低下」という

言葉だけでは、この生命現象の本質を説明することはできないとされています。

 

しかしながら、細胞レベル、分子レベルで体内を観察すると、そこには「免疫システム全体の不可逆的な構造変化(Immunosenescence)」と、それに伴う「終わりのない微弱な炎症(Inflammaging)」**という、2つの大きな病態があるということに気がつくわけです。

 

ヒトの身体が持つ防衛システムを「国家の軍隊」になぞらえながら、老化に伴って免疫の現場で何が起きているのかをお話をしてみたいと思います。
 

   (AIを用いて作成)

 

まずは、兵器工場に変質(へんしつ)が起きる・・・つまり、「造血幹細胞」の老化が生じてくるわけです。

全ての「免疫細胞」という「兵士」は、すべて骨の内部にある「骨髄(こつずい)」という工場で作られます。

 

その源(みなもと)となるのが「造血幹細胞(ぞうけつかんさいぼう)」です。若く健康な造血幹細胞は、あらゆる種類の血液細胞をバランスよく生み出します。

 

しかし、「加齢」により、この工場である「造血幹細胞」そのものが経年劣化(けいねんれっか)を起こしてくるというわけですね。

そして、経年劣化した「造血幹細胞」の工場では、「精密兵器」よりも「暴徒」を生み出すという皮肉(ひにく)な運命を辿ります(たどります)。

若い造血幹細胞は、ウイルスを狙い撃ちにする「精密誘導兵器」のような「リンパ球(T細胞・B細胞)」を十分に生産します。

 

ところが、「老化」に伴い「幹細胞」の遺伝子プログラム(エピゲノム)が書き換わってしまうわけです。その結果、上に示したような

リンパ球を作る能力が著しく低下するとされています。

その代わりに何を作るかというと、「好中球」や「単球」といった、原始的な攻撃力を持つ細胞ばかりを過剰に生産するようになります。

あまり、好ましい例えではないかもしれませんが・・・これは、軍隊で言えば「特殊部隊や空軍(リンパ球)」の育成ができなくなり、指揮系統の乱れた「暴徒化した歩兵(好中球・単球)」ばかりが増員されるようなものです。

 

これが「感染症を防御できないのに、炎症だけは激しくなる」という高齢者特有の病態の根源となります(参考1)。
 

さらに深刻な問題として、加齢した「造血幹細胞」にはDNAの変異が蓄積していきます。

 

ときに、がんに関連する遺伝子変異を持った幹細胞が、骨髄の中で勢力を拡大してしまうことがあります。これを「クローン性造血(CHIP)」と呼びます。

この変異した「幹細胞」から生まれた白血球は、正常な細胞よりも過敏で、炎症を引き起こす物質(炎症性サイトカイン)を撒き散らす性質を持っています。この現象は動脈硬化や心疾患のリスクを高めるだけでなく、全身の炎症レベルを底上げしてしまうことが大規模な疫学調査で明らかになっています(参考2,3)。

 

さらにヒトの身体の中で、最も早く「老化」が進む臓器が関連して

悲劇的なストーリーが展開されるのですが・・・

 

お話の続きは、後日の話題にしたいと思います。

 

素敵な1週間をお過ごしくださいキラキラ

 

それでは、またバイバイ

-------------------------------------------------------------------

<ブログ後記> 12月2日

 

インフルエンザ感染者が、かなり多くなっているようですね。

皆さまは、もうインフルエンザワクチンを接種(せっしゅ)しましたか?

今回は「高齢者」が、なぜ、感染症に弱いのか?・・・について、お話をしているわけですが、本文の方で、免疫細胞という「兵士」を作り出す「造血幹細胞」であるわけですが、「老化」により、機能不全
を生じるわけですね。

これにより、精密な免疫機能を持つT細胞B細胞などを作れなくなることについて、本文でお話をさせていただきました。

しかしながら、加齢に伴う「免疫システム」の悲劇(ひげき)は・・・これだけではありません。

次の悲劇が「胸腺(きょうせん:Thymus)の老化」になります。

この「胸腺」の役割は、T細胞の教育ということになります。
 

どういうことかと言いますと・・・

 

骨髄で作られたT細胞の「卵」は、「胸腺(Thymus)」という臓器に移動し、そこで敵と味方を見分ける教育を受けるわけですね。

しかしながら、本文内でもお話をしたように・・・「胸腺」は人体の中で最も早く老化する臓器の一つとされています。


「胸腺」は思春期をピークに萎縮し、脂肪組織へと置き換わっていきます(Thymic involution)。

60代になる頃には、機能する「胸腺」の組織はほとんど残っていないと考えられています。

このことは、何を意味するのでしょうか?


ざっくりと言いますと・・・新しい敵に対応できる「新兵(ナイーブT細胞)」の供給が、ほぼストップすることを意味します(参考4)。

新兵が来なくなると、ヒトの身体(からだ)はどうするのでしょうか?


かつて、何らかの病原体と戦った経験のある「ベテラン兵(メモリーT細胞)」を維持することで「免疫の空白地帯」を必死に埋(う)めようとします。

その結果、高齢者の体内は、過去に戦ったことがあるウイルス(サイトメガロウイルスなど)に対応する老兵(T細胞)たちでいっぱいになり、「まだ見ぬ新しい敵(新型インフルエンザや未知のウイルス)」に対応できる兵士のスペースが物理的になくなってしまいます。

高齢者が、毎年のように流行株が変わるインフルエンザや、全く新しい感染症に極めて弱い理由はここにあります。彼らの手持ちのカードの中に、新しい敵に対する切り札が存在しないということになるわけですね(参考1)。

では、「ワクチン」を打っておけば、安心なのでしょうか?
「ワクチン」接種後に、遅れて登場する獲得免疫(B細胞・T細胞)もまた、老化の影響を免れません。

B細胞は、ウイルスを中和する「抗体」を作る工場ということになります。
しかし、加齢に伴い、より強力で高品質な抗体を作るためのプロセスがうまく回らなくなると考えられています。

そのため、高齢者にワクチンを接種したとしても

【1】抗体の量が十分に上がらない

【2】抗体の質(結合力)が低い

【3】効果が長続きしない

などという現象が起きやすくなります。

 

インフルエンザワクチンの有効率が、若年者に比べて高齢者で低いのは、B細胞自身の老化に加え、それを助けるT細胞の機能低下が原因であるといことも知られています。

長年にわたり慢性的な刺激を受け続けたT細胞は、「疲弊(ひへい:Exhaustion)」または「老化(Senescence)」と呼ばれる状態に陥り

(おちいり)ます。

 

これらの細胞は、ウイルスを殺す能力を失っているにもかかわらず、「炎症性物質」だけは出し続けるという、極めて有害な存在へと変貌します。働かないばかりか、現場の混乱(炎症)を助長(じょちょう)することが知られています(参考5)

T細胞などの「免疫細胞」も、しっかりと「老化細胞」かするわけですね。

このように、「免疫の老化」は単一の現象ではなく、造血、教育、実動、制御というシステム全体の多層的な崩壊であるとも考えられますね。

現時点での私たちにできる最善の策は、規則正しい生活と運動などで「老化」を最小限に抑えつつ、ワクチン接種によって少しでも多くの「訓練された兵士」を維持することとも言えますね。

後半は、やや感情的な文章になってしまいましたが・・・

中国の兵法書『孫子』にある有名な言葉に

「敵を知り、己を知れば百戦あやうからず」

というものがあります。その意味は、

敵の情勢と、自分自身(味方)の状況をよく理解した上で戦いに臨めば、何度戦っても敗れることはない・・・ということになりますね。

この言葉と同様に・・・「免疫老化のメカニズム」を知ることは、単に恐れることではなく、より良く老いるための戦略を立てる第一歩となるのですね(???)・・・という前向きな言葉で、最後は、お話を結んでおきたいと思います。

 

今回も最後までお付き合い頂きまして

誠にありがとうございましたお願い
 

参考)

1) Nature Immunol. 2018 Jan;19(1):10-19. 

The twilight of immunity: emerging concepts in aging of the immune system

Janko  Nikolich-Žugichら

 

2)N Engl J Med.. 2017 Jul 13;377(2):111-121. 

Clonal Hematopoiesis and Risk of Atherosclerotic Cardiovascular Disease 

Siddhartha Jaiswalら

 

3)Nature. 2025 Jul;643(8071):478-487. 

Clonal tracing with somatic epimutations reveals dynamics of blood ageing 

Michael Schererら

 

4)Trends Immunol. 2009 Jul;30(7):366-73.
Thymic involution and immune reconstitution
Heather E Lynchら
 

5)Annu Rev Immunol. 2024 Jun;42(1):179-206.
T Cell Exhaustion
Andrew Baessler

 

 

 

(東京ミッドタウンのクリスマスツリー)
 (筆者撮影)

 

 =================================

 

理事長・ 院長  

小笠原  均  (Hitoshi Ogasawara)   

医学博士, 内科医

(総合内科、リウマチ専門医)

(新潟大医学部卒)

(業績)

 

 

image

 

 Instagram

 

<クリスマス Music リスト> 

 

<今週、なんとなく聞いてみたい曲> 

 

 

  =====================

<JTKクリニックからのお知らせ>

 

◯Zoomを用いた遠隔医療相談を始めました(内科関連疾患)

 

◯外来診療は予約制をとり、待ち時間が生じないようにしています。

 

◯ ダイエット漢方製剤は、オンライン診療でも可能です。

◯ 線維筋痛症に対するノイロトロピン等の点滴療法、トリガーポイント注射を行なっております。(セカンドオピニオン診療も可)

 

自分の皮下脂肪から組織を採取し、「間葉系幹細胞」を培養して、自分自身の組織内に投与する「幹細胞治療」を開始しました。

 

<JTKクリニック 所在地>

〒102-0083

東京都千代田区麹町4-1-5麴町志村ビル2階

電話 03-6261-6386

Mail:info@jtkclinic.com

 =================================

こんにちは、内科医 ひとちゃんですニコニコ

 

暦に二十四節気では、すでに「小雪(しょうせつ)」となっています。

静かに冬の到来を告げる雪が降るはじめる頃とされていますが、雪までは降らないとしても、音もなく小雨(こさめ)が降っていることに

気がつくことも多くなりました。

 

冬の初めに、降ったかと思うと晴れ、また降りだし、短時間で目まぐるしく変わる通り雨。この雨が徐々に自然界の色を消していくなどとも言われていますね。

 

先人達は、さびれゆくものの中に、美しさと無常の心を養ってきたのだとか。

 

皆さまの体調は、いかがでしょうか?

 

 

                                           (AIを用いて作成)

 

前回は「血管再生医療」とは、どのようなものか?・・・という話題をご紹介したのですが、今回は「皮膚」のコンディションを整える(ととのえる)因子について、お話をしてみたいと思います・

 

実は・・・「皮膚」は最大の臓器でありまして、神経・免疫・内分泌が相互に結び付く「NICE(Neuro-Immuno-Cutaneous-Endocrine)ネットワーク」を備えていることが知られています

 

さらに表皮層にある「角化細胞(ケラチノサイト)」の増殖と分化=「ターンオーバー」は、細胞内プログラムだけでなく、

概日リズム(サーカディアンリズム)と連動して動く

「皮膚のサーカディアン時計」と全身の「ホルモン」により多層的に制御(せいぎょ)されていることが知られています(参考1)

 

皮膚の「ターンオーバー」とは、皮膚の表皮が新しく生まれ変わる周期的なプロセスのことでしたね。

 

表皮の最も深い層(基底層)で新しい皮膚細胞が生まれ、徐々に上の層へと押し上げられていきます。この過程で細胞は変化し、最終的には角質となって表面に到達し、自然に剥がれ落ちるというものでしたね。

 

                                     (AIを用いて作成)

 

「サーカディアンリズム(概日リズム)」のマスタークロック(中枢時計)は、脳の視床下部にある「視交叉上核(SCN)」という部分にありました。

 

そして、「視交叉上核(SCN)」には、「時計遺伝子」というものが存在していました。

「時計遺伝子」には、以下のようなものがあります:

 

ポジティブ因子(転写を促進)

  • CLOCK(Circadian Locomotor Output Cycles Kaput)
  • BMAL1(Brain and Muscle ARNT-Like 1)

 

ネガティブ因子(転写を抑制)

  • PER1, PER2, PER3(Period)
  • CRY1, CRY2(Cryptochrome)
では、皮膚の「サーカディアンリズム」は、どのような時計遺伝子によって、調節をされているのでしょうか?」をされているのでしょうか?」
 
皮膚には、「サーカディアンリズム」の「マスタークロック(中枢時計)」と連動しつつ自律的に振動する末梢時計があり、「CLOCK/BMAL1--PER/CRY の転写‐翻訳ループ」が、約24時間周期の機能変動を作ります。
 
もう少しだけ、具体的に示すと・・・BMAL1は表皮のS期(DNA複製)や細胞分裂の時刻依存的な同期を担い、時計破綻では恒常的な過増殖に傾きます(参考1,2)
 
マウス皮膚では夜間に「DNA複製・分裂」が高まり、時間帯によりUVB感受性とDNA損傷修復能(NER、XPA)が変動することが示されています。
ヒトについても皮膚で時計遺伝子が機能し、細胞周期関連の時刻依存性が示唆されています(参考2,3)
 
さらに・・・日中(特に朝方)と比べ、夜間は増殖系の活動が相対的に高いために、治療や保護の「時間治療(時間最適化)」(クロノセラピー)」が有効である可能性が指摘されているのだそうです。

「時間治療(クロノセラピー)」とは、どのようなものなのでしょうか?
その考え方は、次のようなものであるようです。
 

「クロノセラピー(Chronotherapy)」とは、「サーカディアンリズム」 に合わせて治療や薬の投与時間を最適化することで、効果を最大化し副作用を最小化する治療法のことです。

 

皮膚においては、皮膚細胞が持つ固有の体内時計のリズムに合わせてスキンケアや治療を行うアプローチです。

 

皮膚には独自の「サーカディアンリズム」があり、時間帯によって異なる機能を発揮するのだそうです。具体的には

 

○日中(防御モード)

  • 紫外線からの保護機能が高まる
  • 皮膚バリア機能が最大化
  • 経表皮水分蒸散量(TEWL)が低い

 

●夜間(修復・再生モード)(参考4)

  • DNA修復活動が夜間にピークを迎える
  • 細胞分裂は夜中にピーク達する

 

  • DNA合成(S期)にピーク 
  • 皮膚の透過性が増加し、午後9時から深夜にかけて成分の吸収が最も効果的になる
などとされているのだそうです。
 
 
では、「サーカディアンリズム」のマスタークロックが乱れると・・・末梢の「サーカディアンリズム」も乱れてしまうのでしょうか?
 
このお話の続きは・・・次回の話題にしたいと思います。
実は「サーカディアンリズムかっこばかりでなく、ホルモンも関与してきますので、なかなか、複雑に思えます。
 
なかなか、私には新鮮な話題なわけですが・・・「皮膚」は難しい分野になりますね。
 
素敵な1週間をお過ごしくださいキラキラ
 
それでは、またバイバイ

--------------------------------------------------------------------

<ブログ後記> 11月28日


今回は「皮膚」と「サーカディアンリズム(概日リズム)」の関係について、お話をさせていただきました。


なんとなく、そうではないか?・・・と私は思っておりましたが、やはり、そうであったか・・・とあらためて、納得(なっとく)した次第です。

本文でもお話をしたように・・・

 

皮膚の「再生」には、とりわけ「サーカディアンリズム」は重要な役割を果たしていると報告されていまして、


具体的な年齢は、示されていないのですが・・・加齢した皮膚の「幹細胞」においては、日々のリズムの変化が皮膚の「再生」に悪影響を及ぼすことが報告されています(参考5)。

実際に・・・皮膚の「サーカディアンリズム」は、DNA修復、細胞増殖、アポトーシス、炎症反応、酸化ストレス、
および、ホルモンシグナル伝達を調節することにより、紫外線の一部で誘発されるDNA損傷の管理に重要な役割を
果たしているという報告もあります(参考6)。

では、多くの細胞が産生されるもとになる皮膚の「幹細胞」は「サーカディアンリズム」の支配を受けるのでしょうか?

皮膚の「幹細胞」には、「表皮幹細胞(ひょうひかんさいぼう)」」や「毛包幹細胞(もうほうかんさいぼう)などが
あるのですが、これらの「幹細胞」は・・・

やはり、24時間周期の「サーカディアンリズム」に従って、増殖・分化・DNA修復などの機能を時間帯ごとに最適化していることが知られています。

皮膚「幹細胞」に存在する時計遺伝子(BMAL1, CLOCK, PER, CRYなど)は、日中と夜間で異なる遺伝子発現パターンを
作り出し、紫外線防御や増殖、分化のタイミングを制御します。


そして、「サーカディアンリズム」が乱れますと・・・幹細胞の再生能力が、極端に(きょくたんに)低下し、老化や発がんリスクが高まることも報告されています(参考7)

また、「サーカディアンリズム」は、表皮幹細胞の増殖を調節し、DNA損傷と皮膚の老化を最小限に抑えますが、
 

それを乱すと酸化的DNA損傷や機能障害を引き起こす可能性があると報告されています(参考8)。

このなかで、「BMAL1遺伝子」は、「ROMO1遺伝子」と「活性酸素」などの酸化ストレスを調節することにより
皮膚の治癒に重要な役割を果たしており、その欠乏はマウスにおいて治癒の遅延を引き起こすとされています。

また、「皮膚のターンオーバー」についてですが、シフトワークや夜間の光暴露などでリズムが乱れると、「ターンオーバー」の周期が崩れ、「バリア機能」の低下、「老化」の促進、炎症や皮膚疾患のリスク増加が報告されています。

このように皮膚の「幹細胞」や皮膚真皮層のコラーゲン、エラスチンを産生する「線維芽細胞」ばかりでなく、
「皮膚のターンオーバー」さえも、「サーカディアンリズム」を作り出している「時計遺伝子」の精密な制御(せいみつなせいぎょ)

によって、日中は防御、夜間は修復・再生が最適化されるよう調節されているというのですから・・・かなり、驚きます。


幹細胞やその由来成分(エクソソーム)、光線治療、バイオマテリアル、植物成分など、多様なアプローチが皮膚幹細胞・線維芽細胞・ターンオーバー維持に有効である可能性を示す論文が多数存在します。


では、 皮膚の幹細胞、線維芽細胞、「ターンオーバー」を良好に保つための具体的で、かつ、有効な治療法とは、存在するのでしょうか?

実は、その有効性を示す論文は、多数、存在します。一部をご紹介すると・・・次のようなものになります。

【1】「脂肪由来間葉系幹細胞(MSC)」

【2】「iPS細胞由来エクソソーム」

これらは、線維芽細胞の増殖・コラーゲン合成・ターンオーバー促進・抗炎症・抗老化作用を示し、皮膚の再生や老化抑制に有効とされています。

ここで、「iPS細胞由来エクソソーム」が出てくるのは、とても嬉しい(うれしい)のですが・・・
 

線維芽細胞の増殖・コラーゲン合成・エラスチン合成、ターンオーバー促進作用があり、

また,以前にブログ内でご紹介したように・・・「老化細胞」のうち、細胞の分裂異常が生じたために
 

強制的に分裂を停止させられて、「老化細胞」になってしまったものが存在し、これらが「iPS細胞エクソソーム」によって、「正常細胞」と復帰する・・・その効果は半年程度なのですが・・・
 

この期間は、炎症性サイトカインの放出現象(SASP)がなくなり、「老化細胞」の総数が減ることになりますね。

以上のように・・・脂肪幹細胞由来のエクソソームなどの治療も、iPS細胞由来のエクソソームではないのですが、再生経路、酸化ストレスの調節、細胞活動の調節など、さまざまな分子メカニズムを通じて皮膚の老化防止に潜在的な効果を示す
可能性が指摘されているのですね(参考11)。

なかなか、今後の展開(てんかい)が楽しみ・・・ですね爆  笑

 

今回も最後までお付き合いくださり

誠にありがとうございましたお願い

 

参考)

1) Nature. 2011 Nov 9;480(7376):209-14.

The circadian molecular clock creates epidermal stem cell heterogeneity  

Peggy Janichら

 

2)Proc Natl Acad Sci USA. 2012 Jul 17;109(29):11758-63.
Brain and muscle Arnt-like protein-1 (BMAL1) controls circadian cell proliferation and susceptibility to UVB-induced DNA damage in the epidermis    
Miklail Geyfmanら
 
3)Proc Natl Acad Sci USA.. 2011 Nov 15;108(46):18790-5. 
Control of skin cancer by the circadian rhythm 
Shobhan Gaddameedihiら
 
4)J Drugs Dernatol. 2014 Feb;13(2):130-4. 
Therapeutic implications of the circadian clock on skin function
Adam J Luberら
 
5)J Invest Dermatol. 2021 Apr;141(4S):1024-1030.
Clock Regulation of Skin Regeneration in Stem Cell Aging
Patrick-Simon Welzら
 
6)Int J Mol Sci . 2024 Oct 11;25(20):10926.
The Influence of Circadian Rhythms on DNA Damage Repair in Skin Photoaging
Zhi Suら
 
7)Sci Transl Med . 2017 Nov 8;9(415):eaal2774.
Circadian actin dynamics drive rhythmic fibroblast mobilization during wound healing
Nathaniel P Hoyleら
 
8)Stem Cells. 2023 Apr 25;41(4):319-327.
 How and Why the Circadian Clock Regulates Proliferation of Adult Epithelial Stem Cells
Bogi Andersenら
 
9) Stem Cell Res Ther . 2021 Dec 4;12(1):597.
 MSCs and their exosomes: a rapidly evolving approach in the context of cutaneous wounds therapy
 Faroogh Marofiら
 
10)Int J Mol Sci. 2018 Jun 9;19(6):1715.
Exosomes Derived from Human Induced Pluripotent Stem Cells Ameliorate the Aging of Skin Fibroblasts
Myeongsik Ohら
 
11)Clin Cosmet Investig Dermatol. 2023 Nov 22:16:3383-3406.
 Progress in the Development of Stem Cell-Derived Cell-Free Therapies for Skin Aging
 Yoan Chouら
 
 (恵比寿ガーデンプレイスの
バカラのシャンデリア)
 (筆者撮影)

 

 =================================

 

理事長・ 院長  

小笠原  均  (Hitoshi Ogasawara)   

医学博士, 内科医

(総合内科、リウマチ専門医)

(新潟大医学部卒)

(業績)

 

 

image

 

 Instagram

 

<冬に聞いてみたいJazz リスト> 

曲を更新しました

 

<今週、なんとなく聞いてみたい曲> 

 

 

  =====================

<JTKクリニックからのお知らせ>

 

◯Zoomを用いた遠隔医療相談を始めました(内科関連疾患)

 

◯外来診療は予約制をとり、待ち時間が生じないようにしています。

 

◯ ダイエット漢方製剤は、オンライン診療でも可能です。

◯ 線維筋痛症に対するノイロトロピン等の点滴療法、トリガーポイント注射を行なっております。(セカンドオピニオン診療も可)

 

自分の皮下脂肪から組織を採取し、「間葉系幹細胞」を培養して、自分自身の組織内に投与する「幹細胞治療」を開始しました。

 

<JTKクリニック 所在地>

〒102-0083

東京都千代田区麹町4-1-5麴町志村ビル2階

電話 03-6261-6386

Mail:info@jtkclinic.com

 =================================