【数学】
平成後期はやたらと問題が簡単で満点を狙いにいける問題だったけれど、令和に入ってから問題は難化。
平均点も10点くらい下がってます。
個人的には今のほうが良いと感じています。
5,6年前は平均点が80超えていて、入試問題としてどうなの?と感じていたので。
昨年と比べてあまり難易度は変わった気はしないけれど、平均点はちょっとだけ上昇。
大問1 小問集合
ぱっと見やたらとめんどくさそうな計算問題が並んでいて威圧感がある。
明大中野を彷彿とさせるけれど、実際解いてみるとそんなにしつこいことはなくきれいにいく。
フルマークでいかないとマズい。
大問2 整数の性質
(1)は丁寧にカウントするだけ。
同じものはダメ、大小関係確定しているのでそんなに多くはない。
(2)がどういう状態のモノなのか考える必要がありやや厄介。
どういう数字かわかったとしても間違えそうな絶妙な数字設定になっているのがいい。
どういう数字かわかってても落としている人はけっこう多そう。
大問3 箱ひげ図
基本的な箱ひげ図の読み取り。
細かく確認しないといけないから面倒だけれど、ちゃんと見方がわかっていれば何のことはない。
大問4 空間図形
(1)(2)とやたらと基礎的。
(3)が勝負所かな?とも思うけれど、MARCH攻めるなら対応できないとダメな水準。
大問5 関数
関数と文字と比の扱い。
上位校ではよくある典型的なパターンなので(1)は取らないとマズい。
(2)もたまに見かける面積比から辺の比をとる問題。
対応できないとマズいけれど…どうなんだろう。
アが出るとイはご褒美なので、個々を取ったかどうかで明暗は分かれているかも。
平均点
男子 72.9
女子 68.3
合格最低点
男子 214
女子 213
60分だし合格者平均70はそんなもんかなと感じる。