自分も参考書を書く立場として、市販の参考書で気になっていることを書いときます。


いろいろありますが、今日は真数条件について。これは、高校生の頃から思っていたことです。 (底はすべて2とします。また、^は累乗をを表します。例えば、2^10は2の10乗という意味です)


【その1】置き換えのときは真数条件の確認は不要!!

(よくある市販の参考書から)

(問) 方程式 (logx)^2-4logx+3=0を解け。

(解答)t=logxとおくと、   

 t^2-4t+3=0  

 (t-1)(t-3)=0   

∴ t=1,3

t=1のとき、x=2で、これは真数条件を満たす


t=3のとき、x=8で、これは真数条件を満たす

よって、   x=2,8


(志田の見解)えーとですねぇ。t=logxとおくってことは、x=2^tですから、すべての実数tに対して、x>0は保証されています。だから、真数条件は成り立つに決まっています。だから、赤字は不要。


【その2】対数方程式で、真数条件を解くのはナンセンス! (よくある市販の参考書から)


(問) 方程式 log(x-1)=log(8-2x) を解け。

(解答)真数条件より、   

  x-1>0、8-2x>0

よって、  

  1<x<4 …①

このとき、与えられた方程式は   

  x-1=8-2x   

  ∴ x=3

これは①を満たす。

よって、    

   x=3


(志田の見解)

 真数条件は解く必要はありません!例えば、   

  log(x^5+x+1)=log(x^5ーx+3)

なら真数条件は   

  x^5+x+1>0、x^5ーx+3>0

でしょ。これを解けるなら解いてください(笑)。ちなみに、真数を比べれば、5乗の項が消え、答えはx=1とすぐわかるのに、真数条件なんか解いてたら時間の無駄でしかありません。 志田はこう解きます。 (志田の解答)


(問) 方程式 log(x-1)=log(8-2x) を解け。

(解答)真数条件より、

   x-1>0、8-2x>0  …☆←この式は解かずにこのままにしておく

このとき、与えられた方程式は

   x-1=8-2x 

  ∴ x=3

これは☆を満たす。よって、

   x=3


上も同じように真数条件は解かずに解がx=1とでてから、5次不等式に代入して成立することをチェックすれば、解く必要はないのです。なお、参考書批判でなく、問題提起ですので(笑)。ご意見いただけると嬉しいです。 また、気が向いたら書きます。結構、長くなるし、神経使うから最後かもしれませんが(笑)。