ç®æ¬¡
ãïŒïŒã¯ããã«âæ£å€è§åœ¢ãããªããããããªç«äœ
ãïŒïŒãžã§ã³ãœã³ç«äœãšã¯ïŒ
ãïŒïŒèšå·ã®èª¬æ
ãïŒïŒç¬¬1ã°ã«ãŒãâè§éãå°å¡ãäžžå¡ããã§ãããžã§ã³ãœã³ç«äœ
ãïŒïŒç¬¬2ã°ã«ãŒãâè§æ±ãæ£å€é¢äœãåæ£å€é¢äœããã§ãããžã§ã³ãœã³ç«äœ
ãïŒïŒç¬¬3ã°ã«ãŒãâä»ã®å€é¢äœãšã¯ç¡é¢ä¿ã®ãžã§ã³ãœã³ç«äœ
ãïŒïŒãããã«
ãïŒïŒã¯ããã«âæ£å€è§åœ¢ãããªããããããªç«äœ
å€é¢äœã·ãªãŒãºã®ç¬¬3匟ãšããŠããžã§ã³ãœã³ç«äœãã玹ä»ããŸãã
å€é¢äœã®é£èŒãªã©äžèŠ§ïŒhttps://ameblo.jp/karaokegurui/entry-12598605490.html
å®ã¯ãå€é¢äœã·ãªãŒãºã®é£èŒãå§ããã®ã¯ãããç®çã§ããã
ä»åã®èšäºã¯æ°åŠïŒç«äœå¹ŸäœåŠïŒã®ææã®çŽ¹ä»ã ãã§ã蚌æãªããå³å¯ãªè°è«ã¯äžåè¡ããŸããã
æ°åŠãšãããããç«äœã®åé¡åŠãåç©åŠãšããã¬ãã«ã§ãã
ç«äœã®ãã¡é¢ãæ£å€è§åœ¢ã ããããªããã€ãã¹ãŠã®é ç¹ãåžãšãªã£ãŠãããã®ãããæŽåžå€é¢äœãïŒãããšã€ããããããregular-faced convex polyhedronïŒãšãããŸãã
ïŒregularã¯ãæ£ããregular-facedã¯ãæŽããªã®ã§ãããïŒ
ãããŸã§åãäžããŠããæ£å€é¢äœãåæ£å€é¢äœãæ£è§æ±ãåæ£è§æ±ã¯ããããæŽåžå€é¢äœã§ãã
ãããã¯ãããèŠåæ§ã®ãã圢ãšãªã£ãŠããŸãããæŽåžå€é¢äœã«ã¯ããã以å€ã®ãã£ãšå€ãã£ã圢ã®ãã®ããããŸãã
ããããžã§ã³ãœã³ç«äœã§ãã
ãžã§ã³ãœã³ç«äœã¯ãããããã®èŠåæ§ããã€ä»ã®å€é¢äœããã¹ãŠåãé€ããåŸã®ãèšã£ãŠã¿ãã°âæ®ãç©âã§ãã£ãŠãã ããããâçŠâãªãã¬é¢çœã圢ããã£ã±ãããã®ã§ã(^_^
æŽåžå€é¢äœã®å¯Ÿç§°æ§ïŒé«ãé ïŒ
ããæ£å€é¢äœ ïŒ æºæ£å€é¢äœ ïŒ ïŒãã以å€ã®ïŒåæ£å€é¢äœ
ããããããããããã ïŒ æ£è§æ±ã»åæ£è§æ± ⧠ãžã§ã³ãœã³ç«äœ
(泚)ïŒïŒããããã®äžã§ã察称æ§ã¯ããŸããŸãªã®ã§ãå³å¯ãªãã®ã§ã¯ãªããã€ã¡ãŒãžçšåºŠãšãèããã ããã
ããïŒïŒãžã§ã³ãœã³ç«äœã®å¯Ÿç§°æ§ã¯åã
ã«ç°ãªããŸãããé«ããŠæ£è§æ±ãšåçšåºŠã倧éšåã¯ãããããäœãã§ãã
ãã ãããžã§ã³ãœã³ç«äœã®åœ¢ãèŠãŠæ¥œããããã«ã¯ãæ£å€é¢äœãåæ£å€é¢äœãªã©ã®åœ¢ã«åå銎æãã§ããããšãå¿
èŠã§ãã
ãïŒïŒãžã§ã³ãœã³ç«äœãšã¯ïŒ
æ£å€é¢äœãåæ£å€é¢äœãæ£è§æ±ãåæ£è§æ±ä»¥å€ã®æŽåžå€é¢äœããããžã§ã³ãœã³ç«äœã(Johnson solid)ãŸãã¯ãã¶ã«ã¬ã©ãŒå€é¢äœã(Zalgaller polyhedron)ãšãããŸãã
ä»ååãäžããã®ã¯ããã®ç«äœãã¡ã§ãã
ãžã§ã³ãœã³ç«äœã¯å
šéšã§92çš®é¡ãããŸãã
ãžã§ã³ãœã³ç«äœã¯ãèŠåæ§ã®é«ãæ£å€é¢äœãåæ£å€é¢äœãªã©ãšã¯ç°ãªããåé¢ã®åœ¢ãç°ãªãã®ã¯ãã¡ããã®ããšãé ç¹åšãã®åœ¢ç¶ãé ç¹ããšã«ç°ãªããŸãã
ãŸããå€ãã£ã圢ãå€ããŠãå称ãèããŠãïŒèªãã§ãïŒåœ¢ãæãæµ®ãã°ãªããã®ãå€ããããããã®æ°ã¯92çš®é¡ãšãããããããŸãã
ãã®ãããå称ã«å ã㊠J1ïœJ92ãšããçªå·ãä»ããããŠãããããã¯ã©ã®ç 究è
ãå
±éã«äœ¿çšããŠããŸãïŒçªå·ã¯åãã§ãããJ以å€ã®ã¢ã«ãã¡ãããã䜿ãç 究è
ãããŸããïŒã
çŸèã¯äžèŠã«åŠãããšããããšã§ããšãããããã®å§¿ã玹ä»ããŠãããµã€ããããã€ãã芧ããã ããŸãããã
ïœïŒhttp://ja.wikipedia.org/wiki/%E6%AD%A3%E4%B8%89%E8%A7%92%E5%8F%B0%E5%A1%94%E6%9F%B1
WikiïŒæ¥æ¬èªïŒã§ãããïŒæ£å€é¢äœãåæ£å€é¢äœãšéã£ãŠïŒãã¡ãã¯åæã«åãåããªãã®ãããã§ãã
ãªãã以äžã§äœ¿ããžã§ã³ãœã³ç«äœã®å称ã¯åºæ¬çã«ã¯wikiãšåãã§ãã
ïœïŒhttp://mathworld.wolfram.com/JohnsonSolid.html
WolframMathWorldïŒè±æïŒã§ãããïŒæ£å€é¢äœãåæ£å€é¢äœãšéã£ãŠïŒãã¡ãã¯å€§ããã®ãããã§ãã
ïŒæ¬¡ã®3ã€ã¯ãªã³ã¯ãåããŠããŸãããŽã¡ã³ããµã€m(_ _)m
ïœïŒhttp://www.uwgb.edu/dutchs/symmetry/johnsonp.htm
ãŠã£ã¹ã³ã³ã·ã³å€§åŠã®ã¹ãã£ãŒãã³ã»ãããææã®ãµã€ãïŒè±æïŒã
æåã®è§£èª¬ã¯åŸã§èš³ãã®ã§ããšããããç¡èŠããŠãã ããã
ç§ã¯ãã®è²ä»ããäžçªå¥œãã§ãããçªå·ãä»ããŠããªãã®ãçã«ããºã§ãïŒé åºã¯ã»ãŒåãïŒã
ïœïŒhttp://maths.ac-noumea.nc/polyhedr/p_Johnson_.htm
ãã®ãµã€ãïŒè±æïŒã¯ãæ£3è§åœ¢ãèµ€ãæ£æ¹åœ¢ãéãæ£5è§åœ¢ãç·ãæ£6è§åœ¢ãæ°Žè²ãæ£8è§åœ¢ããªã¬ã³ãžãæ£10è§åœ¢ãç°è²ãšãé¢ã®åœ¢ã«ããè²ä»ãã決ããŠããã®ãç¹åŸŽã
ãã ãæãã®ãé£ç¹ããã£ãšå
ãïŒã²ãŒãïŒ(^_^ïœ
ïŒhttp://flashs.goraikou.com/gallery/polyhedron3d/polyhedronFrame.html
å€é¢äœã®ã£ã©ãªãŒïŒæ¥æ¬èªïŒã
å·ŠåŽã«æ£å€é¢äœãæºæ£å€é¢äœïŒãã®ããã°ã§ããåæ£å€é¢äœã®ããšïŒãæ£å€è§æ±ãæ£å€è§åæ±ããžã§ã³ãœã³ç«äœã®é ã«äžŠãã§ããã®ã§ãèŠããç«äœãã¯ãªãã¯ããŸãã
ïŒéªéãªåºåãåºãŠããå Žåã«ã¯ããã®å³äžã®å°ããªÃãã¯ãªãã¯ããŠæ¶ããŠãã ãããïŒ
ããŠã¹ã§å¥œããªããã«åããå€ããããïŒå転ãããããïŒã®ã§ãèªåã§æš¡åãäœããªããŠãæ°ãæžããŸã§ããŸããŸãªæ¹åããçºããããšãã§ããŸãã
ãžã§ã³ãœã³ç«äœã¯ããããŸã§èŠãŠããæ£å€é¢äœãªã©ãšã¯éã£ãŠé ç¹ããšã«åœ¢ç¶ãç°ãªããããäžæ¹åã ãããçºããã®ã§ã¯é ããŠããéšåãã©ããªã£ãŠããã®ããåãããŸããã
ãã®ããããã®ãµã€ãã¯éèŠã§ããïŒ
ãžã§ã³ãœã³ç«äœã®ç 究å²ã¯ãwikiã«ããã°æ¬¡ã®ãšããã
ã1966幎ãã¢ã¡ãªã«ã®æ°åŠè
ããŒãã³ã»ãžã§ã³ãœã³(Norman Johnson)ãå
š92çš®ãèšããäžèŠ§è¡šãçºè¡šããããããã«çªå·ãšååãäžããããããã§å
šãŠã ãšã®èšŒæã¯ãããªãã£ãã
3幎åŸã®1969幎ããŽã£ã¯ã¿ãŒã»ã¢ãã©ã¢ãŽã£ããã»ã¶ã«ã¬ã©ãŒ(Victor Abramovich Zalgallar)ãã³ã³ãã¥ãŒã¿ãé§äœ¿ããŠããã®äžèŠ§è¡šãå®å
šã§ããããšã蚌æãããã
以äžã®è§£èª¬ã¯ãã¹ãŠãã芧ããã ãããžã§ã³ãœã³ç«äœã®å§¿ãããæ·±ãç解ããŠæ¥œããã§ããã ãããã®ãã®ã§ãããæç« ã ãèªãã§ãæå³ã¯ãããŸããã
äžã§ã玹ä»ãããµã€ãã®äžã€ãããã¯è€æ°ã§ãžã§ã³ãœã³ç«äœã®å®éã®å§¿ã暪ã«èŠãªãããèªã¿ãã ããã
92çš®é¡ã®ç«äœã¯ã倧ãã3ã€ã®ã°ã«ãŒãã«åé¡ãããŸãã
ã»J1ïœJ48ïŒ48çš®é¡ïŒ ïŒ è§éãå°å¡ïŒã ããšãïŒãäžžå¡ïŒãŸããšãïŒããããå士ãããã¯ããããšè§æ±ãåè§æ±ãçµã¿åããããã®ã
ã»J49ïœJ83ïŒ35çš®é¡ïŒ ïŒ è§æ±ãæ£å€é¢äœãåæ£å€é¢äœã®é¢ã«ïŒããïŒè§éãããã¯å°å¡ãåãä»ãããåãé€ãããå転ãããããããã®ã
ã»J84ïœJ92ïŒ9çš®é¡ïŒ ïŒ ä»ã®å€é¢äœãšã¯ç¡é¢ä¿ã®ãã®ããã ããJ87ã®ã¿J86ã«è§éãåãä»ãããã®ã
ãªãã第1ã°ã«ãŒãã®J44ïœJ48ã®5çš®é¡ã¯ãã©ã«ãã€ãŸãå·Šå³ã®å¥ãããïŒé¡ã«æ ãããã®ãéãªããªãïŒã®ã§ããããã®å·Šå³ãåºå¥ãããšã97çš®é¡ã«ãªããŸãã
92çš®é¡ã®ãã¡ãåäœç«äœïŒ2ã€ä»¥äžã®æŽåžå€é¢äœã«å解ã§ããªããã®ïŒã¯ã
ã»J1ïœJ6ïŒç¬¬1ã°ã«ãŒãã®è§éãå°å¡ãäžžå¡èš6çš®é¡)ã
ã»J63ãJ80ãJ83ïŒç¬¬2ã°ã«ãŒãã®3åŽéæ¬ æ20é¢äœãååŽå°å¡æ¬ æææ¹20ã»12é¢äœã3åŽå°å¡æ¬ æææ¹20ã»12é¢äœã®3çš®é¡ïŒ
ã»J84ïœJ86ãJ88ïœJ92ïŒç¬¬3ã°ã«ãŒãã®å€ç¬ãªç«äœ8çš®é¡ïŒ
ã®èš17çš®é¡ã§ãã
ãŸãããžã§ã³ãœã³ç«äœãæ§æããåäœç«äœã¯ããããã«å ããŠã
ã»æ£4é¢äœãç«æ¹äœãæ£12é¢äœïŒæ£å€é¢äœ3çš®é¡ïŒ
ã»åé 4é¢äœãåé ç«æ¹äœãåé 12é¢äœïŒåæ£å€é¢äœ3çš®é¡ïŒ
ã»æ£3è§æ±ãæ£5è§æ±ãæ£6è§æ±ãæ£8è§æ±ãæ£10è§æ±ïŒæ£è§æ±5çš®é¡ïŒ
ã»æ£4è§åæ±ããæ£5è§åæ±ãæ£6è§åæ±ãæ£8è§åæ±ãæ£10è§åæ±ïŒåæ£è§æ±5çš®é¡ïŒ
ã®èš16çš®é¡
åèš33çš®é¡ã§ãã
ãïŒïŒèšå·ã®çš®é¡
以äžã§ã¯ãžã§ã³ãœã³ç«äœããã¹ãŠæç« ã§è§£èª¬ããŸããããã®éã«ã¹ãã£ãŒãã³ã»ãããããã®èšå·ãéšåçã«äœ¿ãã®ã§ããã®è§£èª¬ã®åèš³ãšç§ãªãã®è£è¶³èª¬æãèŒããŠãããŸãã
ãããå€é¢äœã®åéšã®å称
å称ããããããããèšå·ããããããããããå称ããããããããããããããããããã
è§æ±(Prism)ããããPnããæ£ïœè§æ± ïŒ å€©äºãšåºé¢ã®2ã€ã®æ£ïœè§åœ¢ãïœåã®æ£æ¹åœ¢ã®åŽé¢
ããããããããããããããããã§ã€ãªãã ãã®ïŒïœâ§3ïŒ
åè§æ±(Antiprism)ãSnããæ£ïœè§åæ± ïŒ å€©äºãšåºé¢ã®2ã€ã®æ£ïœè§åœ¢ã2ïœåã®æ£3è§åœ¢
ããããããããããããããããã®åŽé¢ã§ã€ãªãã ãã®ïŒïœâ§3ïŒ
è§é(Pyramid)ãããYnãåºé¢ã®æ£ïœè§åœ¢ã®å蟺ã«ä»ããïœåã®æ£3è§åœ¢ã1ã€ã®é ç¹ã«
ããããããããããããããããéãããã®ïŒïœïŒ3ïŒ4ïŒ5ïŒ
ããããããããY3ã¯æ£4é¢äœãY4ã¯æ£8é¢äœã®ååãY5ã¯æ£20é¢äœã®æ£5è§åœ¢ã®ãµã
å°å¡(Cupola)ããããQnãã倩äºãïœè§åœ¢ãåºé¢ã2ïœè§åœ¢ã§ãåŽé¢ã«æ£æ¹åœ¢ãšæ£3è§åœ¢ã
ãããããããããããããããã亀äºã«é£ãªã£ããã®ïŒïœïŒ3ïŒ4ïŒ5ïŒ
ããããããããQ3ã¯ç«æ¹8é¢äœã®ååãQïŒã¯ææ¹ç«æ¹8é¢äœã®æ£8è§åœ¢ã®ãµããQ5ã¯
ããããããããææ¹20ã»12é¢äœã®æ£10è§åœ¢ã®ãµãã
äžžå¡(Rotunda)ãããRnãæ£3è§åœ¢ãšæ£5è§åœ¢ãããªã20ã»12é¢äœã®äžéšïŒïœïŒ2ïŒ3ïŒ5ïŒ
ãããããããããR5ã¯20ã»12é¢äœã®ååãR2ãšR3ã¯åŸã®è§£èª¬åç
§
äžæ¥æ(Lune)ããããLãæ£æ¹åœ¢1ã€ãšãããäž¡åŽããæãæ£3è§åœ¢2ã€ã®èš3é¢ãã
ãããããããããããããããããªãåäœ
ç圢å±æ ¹(Corona)ããUãæ£ïœè§åœ¢ã®å蟺ãšé ç¹ã«æ£3è§åœ¢ãä»ãããã®
é€å»ããéšåããããïŒãå€é¢äœããé€å»ããéšåã¯ãã®èšå·ã®åã«è² å·ãä»ããŠè¡šç€º
ããããããããããããããããããã
èšå·ã¯åå称ã®é æåãããã¯ãã以å€ã®éšåãããšã£ãŠãããã®ãå€ãã§ãã
ã»è§æ±ã¯Prismããªãºã ãªã®ã§èšå·Pãè§éã¯Pyramidãã©ããããªã®ã§èšå·Yããã®2ã€ã¯åãããããã§ããã
ïŒã¡ãªã¿ã«ãå€é¢äœãšã¯ç¡é¢ä¿ã§ãããåæ±ã¯Cylinderã·ãªã³ããŒãåéã¯Coneã³ãŒã³ã§ããåŸè
ã¯ãœããã¯ãªãŒã ã®é£ã¹ããã容åšãéè·¯äžã®èµ€ãã³ãŒã³ã§ã銎æã¿ã§ãããïŒ
ã»åè§æ±ã®èšå·Sã®ç±æ¥ã¯ããåãããŸãããAã䜿ãæ¹ãäžè¬çã§ãããæ¬çš¿ã§ã¯ãããããã«æ¬æãè¡šããŠSã䜿ããŸããïŒæ¬åœã¯æ··ä¹±ãé¿ããããã ãã©ãïŒ
ã»å°å¡ã®è±åCupolaãã¥ãŒãã©ã¯äžžå€©äºãããŒã ã®æã
ãã®èšå·Qã¯é³ããšã£ããã®ã§ãããã
æçºå·¥å Žã§èŠããããã¥ãŒãã©ã¯ãåç圢ã§çŽç«ããééã®æº¶è§£çã
åŒççã®å·å£ã«ãã®å·¥å ŽãéãŸã£ãŠããŠãããã¥ãŒãã©ã®ããçºããšããæ ç»ãäœãããŸãããåæ°žå°çŸåäž»æŒã§ããã1962幎ãªã®ã§ããããã«ç§ããªã¢ã«ã¿ã€ã ã§ã¯èŠãŠããŸããã
ã»PïŒYïŒSïŒQã®åŸã«ä»ããŠããæ°åã¯å転察称æ§ãè¡šãããããšãã°P3ã§ããã°1ïŒ3ïŒïŒ120°ïŒå転ããã°å
ã®åœ¢ã«éãªãããšãæå³ããŸãã
ã»äžžå¡ã®è±åRotundaãã¿ã³ãã¯äžžå±æ ¹ã®ããå圢建ç¯ç©ãå圢倧åºéã®æã
ãã ãR5ã¯ç¬ç«ãããžã§ã³ãœã³ç«äœã§ãããR2ãšR3ã¯ããããJ91ãšJ92ã®äžéšãšããŠã®ã¿çŸããŸãã
ãããã£ãŠãRnã¯ç¬ç«ããç«äœã§ããPnïœQnãšã¯æ§æ Œãå°ãéããŸãããïœãå転察称æ§ãè¡šããç¹ã¯åãã§ã1ïŒïœå転ãããšå
ã®åœ¢ã«éãªããŸãã
ã»ç圢å±æ ¹ã®è±åCoronaã³ããã¯ããšããšã¯å ã®æã
æ¯å©çãªçšæ³ãå€ããããšãã°æ€ç©åŠã§ã¯è±å ïŒè±ã®è±ã³ãã®éšåïŒãæå³ãããŸã建ç¯ã§ã䜿ããŸãã
äžçªæåãªã®ã¯å€©æåŠã«ããã倪éœã®åšãã®ã³ããã§ããã
æ®å¿µãªãã2020幎ããã¯ãŠã€ã«ã¹ãšããã«ããææçã®å称ã«ãªã£ãŠããŸããŸããããïŒ2021/1/1è¿œå ïŒ
ç§ã¯ãã³ãããç圢å±æ ¹ãšèš³ãã®ã¯ãã®åœ¢ããèŠãŠé©ç¢ºã§ã¯ãªãïŒãšããããæå³äžæïŒããå ãã®æ¹ãåãããããæãŸãããšæããŸãããæ··ä¹±ãé¿ãããã以äžã®è§£èª¬ã§ã¯ç圢å±æ ¹ã®ãŸãŸã«ããŠãããŸãã
ç圢å±æ ¹ã®èšå·Uã¯å®éã®åœ¢ãããšã£ãŠããã®ã ãšæããŸãïŒJ86以éã®è§£èª¬åç
§ïŒã
ç圢å±æ ¹ã«ã¯ãV2ïŒæ£æ¹åœ¢2æïŒãU2ïŒæ£æ¹åœ¢3æïŒãU3ïŒæ£6è§åœ¢1æãæ£æ¹åœ¢3æïŒã®3çš®é¡ããããŸãã
ããã©ãã³å€é¢äœãšã¢ã«ãã¡ãã¹å€é¢äœã®èšå·
å称ããããããããèšå·ããããåèãããããããã.
æ£12é¢äœããããããD5ãããDodecahedronãã
æ£20é¢äœããããããI5ããããIcosahedronãã
ææ¹20ã»12é¢äœãããE5ããã
åé å€é¢äœããããã TnãããTruncatedãã
ãâæ£4é¢äœãããããT3
ãâç«æ¹äœããããã T4
ãâæ£12é¢äœããããT5
ãæäœã®çš®é¡ãšçšèª
çšèªããããããããããå®çŸ©ãããããããããããããããããããããèšå·ããããããããããã
Augmentedãããç«äœã®ããé¢ã«å°å¡ãããã¯è§éãä»ããããä»å ãããéšåã«å¯Ÿå¿ããŠ
ãããããããããããããããããããããããããããããããQnïŒYn
Elongatedããããç«äœã«è§æ±ãæ¿å
¥ãããäžç«¯ã«ä»ãå ããããä»å ãããè§æ±ã«å¯Ÿå¿ããŠ
ããããããããããããããŠå»¶é·ãããããããããããããããPn
Gyroelongatedãç«äœã«åè§æ±ãæ¿å
¥ãããäžç«¯ã«ä»ãå ãããä»å ãããåè§æ±ã«å¯Ÿå¿ããŠ
ããããããããããããããŠå»¶é·ãããããããããããããããSn
Gyrateããããããéåžžã®æäœã«æ¯ã¹ãŠããããéšåãããããããããéšåã«å¯Ÿå¿ããèšå·
ãããããããããããããããããããããããããããããããã®åã« g
Diminishedãããç«äœããåãé€ãããéšåãããããããããé€å»ãããéšåã®èšå·ã®åã«
ãããããããããããããããããããããããããããããããè² å· ïŒ
Para-ããããããç«äœã®æ£å察ã®åŽã®2é¢ã«å¯ŸããŠããããããå€åããéšåã®èšå·ã®åã«
ããããããããã¯ãã®äžã«ããéšåã«å¯ŸããŠè¡ãããæäœããããïœ
Meta-ããããããç«äœã®æ£å察ã«ã¯ãªã2é¢ã«å¯ŸããŠãããããå€åããéšåã®èšå·ã®åã«
ããããããããããã¯ãã®äžã«ããéšåã«å¯ŸããŠè¡ãããæäœãããïœ
ïŒä»¥äžã§ã¯ã巊端ã®è±èªã®çšèªã¯ããŸã䜿ããŸãããè±åãç解ããããã®åèã«ããŠãã ãããïŒ
ãããã®èšå·ã®å®éã®äœ¿ãæ¹ã¯ããã®åŸã§åºãŠããŸãã
ã¹ãã£ãŒãã³ã»ãããããã®èšå·ã¯ãåç«äœã®ååã«å¿ å®ã«ãå
ã®ç«äœã«ã©ãããæäœãè¡ã£ããã瀺ããŠããŸãã
ããã«å¯ŸããŠãç§ã¯ä»¥äžã§ã¯åäœç«äœã®çµåããšããŠè¡šèšããŠããŸãã
ããã§ã¯ãJ1ããJ92ãŸã§é ã«è§£èª¬ããŠãããŸãã
------------------ãç¶ããã------------------
ãžã§ã³ãœã³ç«äœã®è§£èª¬2 | å®å®ãšãã©ãã¯ããŒã«ã®Q&A (ameblo.jp)
ãžã§ã³ãœã³ç«äœã®æ°ååã®ææ¡ | å®å®ãšãã©ãã¯ããŒã«ã®Q&A (ameblo.jp)