del Pezzo surfaces | K3 surfaces with involutions

K3 surfaces with involutions

Local and global Torelli theorems for complex K3 surfaces, periods of K3 surfaces, non-symplectic holomorphic involutions, anti-holomorphic involutions, Hilbert schemes of K3 surfaces, Nikulin's lattice theory, lattice-polarized K3 surfaces. . .

参考文献:

Valery Alexeev and Viacheslav V. Nikulin,

Del Pezzo and K3 surfaces,MSJ Memoir (2006).



定義

A complete algebraic surface Z with log terminal singularities is

a del Pezzo surface if its anticanonical divisor -K_Z is ample.


注意

2次元log terminal singularity over C は,

商特異点 C^2/G (ここで,GはGL(2,C)の有限部分群)に解析的に同値である.


定義

index i of z ∈ Z とは,the minimal positive integer for which

i K_Z is a Cartier divisor in a neighbourhood of z.


定義

log terminal singularities を持つdel Pezzo surface をlog del Pezzo surface という.


注意

log del Pezzo surfaces of index ≦2 は,次の古典的casesを含む:

●nonsingular del Pezzo surfaces

●log del Pezzo surfaces of index 1

 (これらは,Gorenstein log del Pezzo surfaces と呼ばれる)