
一つは「÷9を÷8にするとどうなるか」と「わられる数の十と一の位を変えるとどうなるか」という,数を変えて考える「発展的な考え方」を「帰納的に追究」指定校とする方向です。
もう一つはは「どうして11や1ずつ増えるのか。」という「演繹的な追究」に進めることです。懲りように,広げていくときにはいろんな方向性がありりますので,教師の方で示してやります。課題設定の場面は,師範を示してやります。

「100÷8=12あまり4」なので,スタートの「98÷8=12あまり2」なので,次は商が12増え,余りが6(2+4)になり,次は余りが6+4で10になりますが,わる数が8なので,10-8=2が余りになり,その分が商に1加わるのです。(結果的に商が13増える)

前者は,動的に見ていて,後者は静的に見ていることになります。このように,子どもの素直な動きに中に,数学で大切にしたい内容(考え方)がたくさん含まれています。「自由研究」でなければできないことではありませんが,夏休みというこんな機会に,この経験をしておくのはとても意義があると思われます。