こんばんは。ルッタです。

 

今週は忙しいです。

面談に、会議に、資料を添削したり。

仕事なので、仕方ないんですがね。

 

今日も、少し遅くなった分、息子には国語と算数を解かせておきました。

 

算数は、昨日間違えた問題をもう一度。

 

やはり、場合の数は間違いが多いです。

でも、以前と比べると正解には確実に近づいています。

もうひと踏ん張りです。

 

 

この1ヵ月、中学の数学を勉強しています。

もちろん先を見越してという事もありますが、それだけではありません。

 

 

私が勉強する時に意識することは、「一般化」です。

 

つるかめ算が出来るようになっても、車とバイクのタイヤの数の問題が解けなければ意味がありません。

ある距離を車で行くのに、途中で速さを変えるみたいな問題も、ある意味つるかめ算です。

 

そう考えると、つるかめ算って何だろうって考える訳です。

 

私は、教育者としては全くの素人なので、あくまでも個人の考えですが。。。

 

 

例えば、下記の問題を解く時に。

 

鶴と亀が合わせて15匹いて、合計の足の数が40本の時、亀は何匹ですか。

 

全部、鶴だとすると足の数は、30本。

1匹亀に変わるごとに足が2本増えるので、

(40-30)/(4-2)=5 

答えは5匹。

 

基本のつるかめ算です。

 

これを方程式で解くと、

 

亀をx匹だとすると、

4x + 2(15-x) = 40

x = (40-30) / (4-2) = 5

答えは5匹。

 

当然ですが同じ答えになります。更に当然ですが、つるかめ算の式と方程式の解を求める式も同じになります。

 

もう1題。旅人算ですが、

 

AとBの間の距離は1000mです。Aから分速40mでAさんが、Bから分速60mでBさんが同時に出発する時、二人は何分後に出会いますか。

 

AさんとBさんは、1分間に100m近づくので、

1000 / (60 + 40) = 10

答え 10分後。

 

これも方程式にすると、

 

x分後に出会うとすると、

二人が異動した距離の合計が1000mなので、

40x + 60x = 1000

x = 1000 / (60 + 40) = 10

答え 10分後。

 

これも同じ式になります。

 

結局、~算って言うのは、方程式を解く時の式を公式にしているだけなんじゃないかと。

というか、「方程式を扱えない小学生が文章題を解けるように、無理やり考えた公式が~算」なのではないでしょうか。

 

これが、私の考える「一般化」です。

まあ、実際のところがどうなのかは知りませんが。

 

何せ私には中学受験の経験がありませんので。。。。ニヤリ

 

 

そうなると、~算を一生懸命勉強するより、方程式を教えたほうがシンプルだなと感じる訳です。

求めたいモノをxとおいて、問題文から式を作成し、それを解く。

 

~算、~算と分ける必要もありません。

 

問題文を理解し、作図し、式に落とし解く。

実に単純。

 

それを実践するために、文字式と方程式の解き方を勉強しました。

今後も強化するつもりです。文字式を上手く扱えることは必ずプラスになると思っています。

 

文字式と方程式がクリアできるなら、文章題に対しては近道だよな。。。と。

整数の問題も、文字式の計算力があればごり押し出来る事も多いですし。

 

比の勉強をする前に方程式を教えるつもりはありませんでしたが、比の勉強が終わったので教えてもいいかなと考えました。

 

と、こんなことを言いながら、~算というのはしっかりと教えてあります。

方程式よりも時間はかなり短縮できますので。

 

幸い今のところは使い分けてくれているので、思い通りになっています。

 

 

メネラウスの定理が中学受験の参考書に普通に出てきて、方程式が駄目なんてことは。。。

 

疲れていて、しかもちょっと飲んでいるので、支離滅裂な文章ですいません。

 

 

クリックをお願いします爆  笑

ブログ更新の励みになります口笛

 

にほんブログ村 受験ブログ 中学受験(自宅学習組)へ
にほんブログ村

 

にほんブログ村 受験ブログ 中学受験(本人・親)へ
にほんブログ村

 


中学校受験ランキング