機械学習 機械学習および データマイニング Ⅲ【中半】技法…

 

脚注

  1. ^  Wernick, Yang, Brankov, Yourganov and Strother, Machine Learning in Medical Imaging, IEEE Signal Processing Magazine, vol. 27, no. 4, July 2010, pp. 25-38
  2. ^ それらの手法は、Machine Learning や IEEE Transactions on Pattern Analysis and Machine Intelligence などの学術雑誌などで発表されることが多い。
  3.  もう一度「ビッグデータ」を考える
  4. http://holehouse.org/mlclass/01_02_Introduction_regression_analysis_and_gr.html
  5.  Mitchell, T. (1997). Machine Learning, McGraw Hill. ISBN 0-07-042807-7, p.2.
  6.  Christopher M. Bishop (2006) Pattern Recognition and Machine Learning, Springer ISBN 0-387-31073-8.
  7.  統計的学習理論, 金森敬文, 機械学習プロフェッショナルシリーズ, 講談社, 2015, ISBN 9784061529052
  8.  Yoshua Bengio (2009). Learning Deep Architectures for AI. Now Publishers Inc.. p. 1–3. ISBN 978-1-60198-294-0.
  9.  "BelKor Home Page" research.att.com

参考文献

  • Thomas Mitchell "Machine Learning" McGraw-Hill (1997) ISBN 978-0071154673 (入門用の教科書) →サポートページ
  • Christopher M. Bishop "Pattern Recognition And Machine Learning" Springer-Verlag (2006) ISBN 978-0387310732 (中上級の教科書) →サポートページ(ここから、第8章 "Graphical Models" をpdf形式で入手可能)
    • 日本語版「パターン認識と機械学習 - ベイズ理論による統計的予測」シュプリンガージャパン (2007-2008) 上巻:ISBN 978-4431100133 下巻:ISBN 978-4431100317 →日本語版サポートページ
  • Trevor Hastie, Robert Tibshirani, and Jerome H. Friedman "The Elements of Statistical Learning: Data Mining, Inference, and Prediction" Springer-Verlag (2001) ISBN 978-0387952840 (高度な内容も含む.数理・統計系の手法が中心) →サポートページ(ここから、全章をpdf形式で入手可能)
  • David MacKay "Information Theory, Inference, and Learning Algorithms" (2003) (ベイズ推論を中心に、情報理論と機械学習を包括的にカバーした教科書) →著者ページ(ここから全文をPDF形式で入手可能)
  • Sergios Theodoridis, Konstantinos Koutroumbas (2009) "Pattern Recognition", 4th Edition, Academic Press, ISBN 978-1-59749-272-0.
  • Ethem Alpaydın (2004) Introduction to Machine Learning (Adaptive Computation and Machine Learning), MIT Press, ISBN 0-262-01211-1
  • Bing Liu (2007), Web Data Mining: Exlporing Hyperlinks, Contents and Usage Data. Springer, ISBN 3-540-37881-2
  • Toby Segaran (2007), Programming Collective Intelligence, O'Reilly, ISBN 0-596-52932-5
  • Ray Solomonoff, "An Inductive Inference Machine" A privately circulated report from the 1956 Dartmouth Summer Research Conference on AI.
  • Ray Solomonoff, An Inductive Inference Machine, IRE Convention Record, Section on Information Theory, Part 2, pp., 56-62, 1957.
  • Ryszard S. Michalski, Jaime G. Carbonell, Tom M. Mitchell (1983), Machine Learning: An Artificial Intelligence Approach, Tioga Publishing Company, ISBN 0-935382-05-4.
  • Ryszard S. Michalski, Jaime G. Carbonell, Tom M. Mitchell (1986), Machine Learning: An Artificial Intelligence Approach, Volume II, Morgan Kaufmann, ISBN 0-934613-00-1.
  • Yves Kodratoff, Ryszard S. Michalski (1990), Machine Learning: An Artificial Intelligence Approach, Volume III, Morgan Kaufmann, ISBN 1-55860-119-8.
  • Ryszard S. Michalski, George Tecuci (1994), Machine Learning: A Multistrategy Approach, Volume IV, Morgan Kaufmann, ISBN 1-55860-251-8.
  • Bishop, C.M. (1995). Neural Networks for Pattern Recognition, Oxford University Press. ISBN 0-19-853864-2.
  • Richard O. Duda, Peter E. Hart, David G. Stork (2001) Pattern classification (2nd edition), Wiley, New York, ISBN 0-471-05669-3.
  • Huang T.-M., Kecman V., Kopriva I. (2006), Kernel Based Algorithms for Mining Huge Data Sets, Supervised, Semi-supervised, and Unsupervised Learning, Springer-Verlag, Berlin, Heidelberg, 260 pp. 96 illus., Hardcover, ISBN 3-540-31681-7.
  • KECMAN Vojislav (2001), Learning and Soft Computing, Support Vector Machines, Neural Networks and Fuzzy Logic Models, The MIT Press, Cambridge, MA, 608 pp., 268 illus., ISBN 0-262-11255-8.
  • Ian H. Witten and Eibe Frank (2011). Data Mining: Practical machine learning tools and techniques Morgan Kaufmann, 664pp., ISBN 978-0123748560.
  • Sholom Weiss and Casimir Kulikowski (1991). Computer Systems That Learn, Morgan Kaufmann. ISBN 1-55860-065-5.
  • Mierswa, Ingo and Wurst, Michael and Klinkenberg, Ralf and Scholz, Martin and Euler, Timm: YALE: Rapid Prototyping for Complex Data Mining Tasks, in Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD-06), 2006.
  • Vladimir Vapnik (1998). Statistical Learning Theory. Wiley-Interscience, ISBN 0-471-03003-1.
  • ピーター フラッハ, 竹村 彰通 (監訳)、「機械学習 ─データを読み解くアルゴリズムの技法─」、朝倉書店、ISBN978-4254122183 (2017年4月5日)。

関連項目

外部リンク


統計学
標本調査
要約統計量
連続データ
位置
分散
モーメント
カテゴリデータ
統計的推測
仮説検定
区間推定
その他
生存時間分析
相関
モデル
回帰
線形
非線形
分類
線形
二次
非線形
その他
教師なし学習
クラスタリング
その他
統計図表
歴史
応用
出版物
カテゴリ

カテゴリ