超弦理論 Ⅰ【冒頭】目次 概論 基本的な説明
宇宙論への応用[編集]
ブレーン描像を宇宙論に適用した理論は、ブレーンワールドと呼ばれ、典型的な模型では我々はこのブレーンの上に住んでいることになる。またこのモデルでは、量子力学で使われる3つの力に対して、何故重力が極端に弱いのかを説明がつけられるとしている。つまり、他の3つの力、即ち、電磁気力(電磁力ともいう)、弱い力、強い力に比較して弱いのは、他の次元にその大半が逃げてしまっているためと考えられる。
これに関連して、例えば宇宙論のインフレーションをブレーンの運動で捉えるなど、様々な研究がなされている。なお、ビッグバンは我々の存在する宇宙が所属する膜と他の膜の接触によるエネルギーが原因で起こったとするモデルもあり、エキピロティック宇宙論と呼ばれている。通常のインフレーションを導出しようとする試みも進行中である。
歴史
![]() |
この節の加筆が望まれています。 |
カルツァ=クライン理論
詳細は「カルツァ=クライン理論#歴史」を参照
超弦理論は10次元時空でのみ理論が定式化されるため、超弦理論に基づいた多くのモデルでは、現実の4次元時空を導くために「カルツァ=クライン理論」のアイデアを応用している。
1919年、テオドール・カルツァは5次元時空上での一般相対性理論(重力)を、4次元時空では、マクスウェル方程式(電磁気力)を考えるという理論の元となるアイディアをアルベルト・アインシュタインへの手紙の中で明らかにした。論文はしばらくアインシュタインの机の中にあったが、その後アインシュタインの助力を得て1921年に発表された。
1926年になって、オスカル・クラインがカルツァの理論を修正して五次元時空の理論に余剰次元を非常に小さなスケールに折りこむというコンパクト化の理論を組み込んだ理論を発展させ、カルツァ=クライン理論として知られるようになった。
弦理論初期
詳細は「弦理論#歴史」を参照
1950年代末から1960年代にかけて強い相互作用をする粒子(ハドロン)が多く発見され、それらの分類とその構成の成り立ちについての考察が始められた。超弦理論の元となった弦理論は、こうした粒子間に働く強い力の性質を記述するために考え出された。
まず、1950年代はじめにトゥーリオ・レッジェは、ハドロンの散乱実験において、共鳴状態の静止質量の2乗とスピンとの間に直線関係があることを見出した(レッジェ軌道)。1968年にイタリアのガブリエル・ヴェネツィアーノは、レッジェ軌道を再現する非常に簡単な公式で「散乱振幅」として表現した(ヴェネツィアーノ振幅)。
その公式を元に、ハドロンは振動する弦であると発表したのが、1970年の南部陽一郎、レオナルド・サスキンド、ホルガー・ベック・ニールセンである。それぞれ独立に発表された彼らの弦理論では、ハドロンは粒子ではなく振動する弦から構成され、粒子はそれぞれの振動モードに対応するというものであった。ただしこの理論では、弦の振動に理論の不安定性を表すタキオンが含まれるという欠陥が内包されていた。
南部らの弦理論ではボース粒子のみを記述していてフェルミ粒子は扱えないという問題もあったが、当時はフェルミ粒子を含めてボース粒子以外の記述を弦理論を拡張することで解を得ようという学者は少数派であった。1971年に、フランスのP.ラモン、A.ヌヴォ、アメリカのJ.シュワルツの3人によってボース粒子とフェルミ粒子の両方が扱える模型が提唱された。この模型が、超弦理論へと発展していくことになる。
第1次ストリング革命
1984年、グリーンとジョン・シュワルツによって、10次元の超重力理論および超弦理論でアノマリーのない理論が存在することが示されると、超弦理論は脚光を浴びるようになった。 特にE8×E8のゲージ場を含むヘテロティック超弦理論において、理論の定義される10次元のうち余分な6次元をカラビ-ヤウ多様体でコンパクト化した理論は、低エネルギーで {\displaystyle {\mathcal {N}}=1} の超対称性を持つ理論が導かれ、重力を含む統一理論の候補として盛んに研究された。
しかし、余分な6次元がコンパクト化されるメカニズムが不明であること、コンパクト化として可能な多様体の種類が無数にあり、その中から1つを選び出すことが摂動論の範囲では不可能であることなどの困難が存在した。
第2次ストリング革命
1995年、 ポルチンスキーによりDブレーンが超弦理論のソリトン解であることが示され、また、ウィッテンによりこれまで知られていた5つの超弦理論を統一する11次元のM理論が提唱されると、超弦理論は再び脚光を浴びることとなった。この2つは、それまでに予想されていた種々の双対性(S双対性、T双対性)と組み合わせることで、これまで摂動論の範囲でしか定義されていなかった超弦理論の非摂動的な性質の理解を深めることとなった。また、Dブレーンの低エネルギーでの性質は超対称ゲージ理論で記述されるため、ゲージ理論を用いて超弦理論の性質を調べること、逆に、Dブレーンの適当な配位を考えることでゲージ理論の非摂動的な性質を調べることが可能となり、精力的に研究された。
このDブレーンは、ブラックホールのエントロピーの表式を統計力学的に導出する際にも用いられ、超弦理論が重力の量子論であることの傍証となった。また、マルダセナによるAdS/CFT対応は、まったく別の理論である超対称ゲージ理論と超重力理論が、ある極限のもとで等価となることを予想し、超弦理論や重力理論、ゲージ理論に対して新しい知見を与えることとなった。