こんにちは。
算数嫌いゼロ先生です。
算数の問題では、ある量が変化すると、それにともなって変化する数量があります。
比例とよばれたり、反比例とよばれたりする問題です。
しかし、そのどちらにも当てはまらないものもあります。
もしあなたのお子さんが比例の問題を苦手としていたら、…
もしあなたのお子さんが、反比例の問題を苦手としていたら、…
もしあなたのお子さんが、「1つなら分かるけれど、2つの関係について考えるとなるとちょっと」と考えているとしたら、…
今日は、その苦手意識を払拭する絶好のチャンスです。
早速問題です。
(問) 次の(あ)〜(え)で、一方の量が増えると、もう一方の量は、どのように変わっていくか調べましょう。
(あ) 誕生日が同じで年れいの差が4才の、弟の年れいと姉の年れい
(い)面積が24㎠の長方形の、横の長さとたての長さ
(う)分速2mで歩くおもちゃのロボットの、歩いた時間と進んだ長さ
(え)40ページあるノートを使っていくときの、使ったページと残りのページ数
問(1) 一方の量が増えると、それにともなってもう一方の量も増えるものはどれでしょう。
また、それを選んだわけも説明しましょう。
(登場人物)
あおいさん、ゆうと君
(見通し)
あおい:「年れいは、増えることはあっても、減ることはない?」
ゆうと:「横の長さとたての長さ、どちらも増えたら、面積が変わっちゃうんじゃないの?」
あおい:「時間が増えれば、進んだ長さも増える?」
ゆうと:「40ページのノート。使ったページが増えれば、残りのページ数は?」
ゼロ先生:「どうかな。見通しが立ったところで、答えがわかった人はどうぞ」
ゆうと:「(あ) です」
なぜか?
ゆうと:「弟が0才のとき、姉は4才。
弟が1才、2才、…と増えると、
姉の年れいも5才、6才、…と増えていくからです」
あおい:「もう一つあります。それは、(う)です」
なぜか?
あおい:「ロボットが1分歩くと2m、2分歩くと4m進みます。
歩いた時間が増えると、進んだ長さも増えるからです」
答え (あ)、(う)
では、問題を解くとき、イメージできない友だちに教えるとき、どうしたら、いいでしょう。
あおい:「(あ)の問題なら、数字を書き出します」
弟 … 0 → 1 → 1 → 2
姉 … 4 → 5 → 6 → 7
ゆうと:「2量の変わり方を表に書かせて調べさせます」
ゼロ先生:「なるほど、『表』を使う。いいですね」
ゆうと「一方の値を1、2、…と入れ、もう一方の値がどうなるか考えさせます」
ゼロ先生:「具体的になってきましたね」
ゼロ先生:「実際に書かせるのが理解させる早道ですね」
あおい:「私なら、図にかいて説明します」
例えば、(い) などは、図にかくと次のようになります。
図 (い)
次回は、一方の量が増えると、もう一方の量がへるものについて、やっていきます。
これで、算数タイムは終わりです。次回の算数タイムを楽しみにしてください。