Quantum Theory Review 
to Quantum Brain&Biocomputer
(Quantum Brain Science and Technology)

 
Quantum Physicist and Brain Scientist 
Visiting Professor of Quantum Physics, California Institute of Technology
IEEE-USA Fellow
Ph.D. & Dr. Kazusho Kamuro
AERI:Artificial EvolutionResearch Institute
Pasadena, California
HP: https://www.aeri-japan.com/

 

1. Quantum theory for Quntum Brain
・The problem of how mind and matter are related to each other has many facets, and it can be approached from many different starting points. The historically leading disciplines in this respect are philosophy and psychology, which were later joined by behavioral science, cognitive science and neuroscience. In addition, the physics of complex systems and quantum physics have played stimulating roles in the discussion from their beginnings.
・As regards the issue of complexity, this is evident: the brain is one of the most complex systems we know. The study of neural networks, their relation to the operation of single neurons and other important topics do and will profit a lot from complex systems approaches. As regards quantum physics, there can be no reasonable doubt that quantum events occur and are efficacious in the brain as elsewhere in the material world—including biological systems. But it is controversial whether these events are efficacious and relevant for those aspects of brain activity that are correlated with mental activity.
・The original motivation in the early 20th century for relating quantum theory for quantum brain&biocomputer to consciousness was essentially philosophical. It is fairly plausible that conscious free decisions (“free will”) are problematic in a perfectly deterministic world, so quantum randomness might indeed open up novel possibilities for free will. On the other hand, randomness is problematic for goal-directed volition.
・quantum theory for quantum brain&biocomputer introduced an element of randomness standing out against the previous deterministic worldview preceding it, in which randomness expresses our ignorance of a more detailed description (as in statistical mechanics). In sharp contrast to such epistemic randomness, quantum randomness in processes such as the spontaneous emission of light, radioactive decay, or other examples has been considered a fundamental feature of nature, independent of our ignorance or knowledge. To be precise, this feature refers to individual quantum events, whereas the behavior of ensembles of such events is statistically determined. The indeterminism of individual quantum events is constrained by statistical laws.
・Other features of quantum theory for quantum brain&biocomputer, which became attractive in discussing issues of consciousness, were the concepts of complementarity and entanglement. Pioneers of quantum physics such as Planck, Bohr, Schrödinger, Pauli (and others) emphasized the various possible roles of quantum theory for quantum brain&biocomputer in reconsidering the old conflict between physical determinism and conscious free will. For informative overviews with different focal points see e.g., Squires (1990), Kane (1996), Butterfield (1998), Suarez and Adams (2013).
2. To Future Success
・The historical motivation for exploring quantum theory for quantum brain&biocomputer in trying to understand consciousness derived from the realization that collapse-type quantum events introduce an element of randomness, which is primary (ontic) rather than due to ignorance or missing information (epistemic). Approaches such as those of Stapp and of Beck and Eccles emphasize this (in different ways), insofar as the ontic randomness of quantum events is regarded to provide room for mental causation, i.e., the possibility that conscious mental acts can influence brain behavior. The approach by Penrose and Hameroff also focuses on state collapse, but with a significant move from mental causation to the non-computability of (particular) conscious acts.
・Any discussion of state collapse or state reduction (e.g. by measurement) refers, at least implicitly, to superposition states since those are the states that are reduced. Insofar as entangled systems remain in a quantum superposition as long as no measurement has occurred, entanglement is always co-addressed when state reduction is discussed. By contrast, some of the dual-aspect quantum approaches utilize the topic of entanglement differently, and independently of state reduction in the first place. Inspired by and analogous to entanglement-induced nonlocal correlations in quantum physics, mind-matter entanglement is conceived as the hypothetical origin of mind-matter correlations. This exhibits the highly speculative picture of a fundamentally holistic, psychophysically neutral level of reality from which correlated mental and material domains emerge.
・Each of the examples discussed in this overview has both promising and problematic aspects. The approach by Beck and Eccles is most detailed and concrete with respect to the application of standard quantum mechanics to the process of exocytosis. However, it does not solve the problem of how the activity of single synapses enters the dynamics of neural assemblies, and it leaves the mental causation of quantum processes as a mere claim. Stapp’s approach suggests a radically expanded ontological basis for both the mental domain and status-quo quantum theory for quantum brain&biocomputer as a theory of matter without essentially changing the formalism of quantum theory for quantum brain&biocomputer for quantum brain&biocomputer. Although related to inspiring philosophical and some psychological background, it still lacks empirical confirmation. The proposal by Penrose and Hameroff exceeds the domain of present-day quantum theory for quantum brain&biocomputer by far and is the most speculative example among those discussed. It is not easy to see how the picture as a whole can be formally worked out and put to empirical test.
・The approach initiated by Umezawa is embedded in the framework of quantum field theory, more broadly applicable and formally more sophisticated than standard quantum mechanics. It is used to describe the emergence of classical activity in neuronal assemblies on the basis of symmetry breakings in a quantum field theoretical framework. A clear conceptual distinction between brain states and mental states has often been missing. Their relation to mental states is has recently been indicated in the framework of a dual-aspect approach.
・The dual-aspect approaches of Pauli and Jung and of Bohm and Hiley are conceptually more transparent and more promising. Although there is now a huge body of empirically documented mind-matter correlations that supports the Pauli-Jung conjecture, it lacks a detailed formal basis so far. Hiley’s work offers an algebraic framework which may lead to theoretical progress. A novel dual-aspect quantum proposal by Primas, based on the distinction between tensed mental time and tenseless physical time, marks a significant step forward, particularly as concerns a consistent formal framework.
・Maybe the best prognosis for future success among the examples described in this overview, at least on foreseeable time scales, goes to the investigation of mental quantum features without focusing on associated brain activity to begin with. A number of corresponding approaches have been developed which include concrete models for concrete situations and have lead to successful empirical tests and further predictions. On the other hand, a coherent theory behind individual models and relating the different types of approaches is still to be settled in detail. With respect to scientific practice, a particularly promising aspect is the visible formation of a scientific community with conferences, mutual collaborations, and some perspicuous attraction for young scientists to join the field.


--------------------------------------------
 Prof. PhD.Dr. Kamuro
Quantum Physicist and Brain Scientist involved in Caltech & AERI Assosiate Professor and Brain Scientistficial Evolution Research Institute(AERI: https://www.aeri-japan.com/)
IEEE-USA Fellow 
Ph.D. & Dr. Kazuto Kamuro
https://www.aeri-japan.com
email: info@aeri-japan.com

--------------------------------------------

 

Keywords Artificial EvolutionResearch Institute:AERI 
HP: https://www.aeri-japan.com/
#ArtificialBrain #ArtificialIntelligence  #QuantumSemiconductor #Quantumphysics #BioComputer #BrainScience #QuantumComputer #AI #NeuralConnectionDevice #QuantumInterference #QuantumArtificialIntelligence #GeoThermalpower #MissileDefense #MissileIntercept #NuclearDeterrence #QuantumBrain #DomesticResiliency #Quantumphysics #Biologyphysics #Brain-MachineInterface #BMI #nanosizeSemiconductors #UltraLSI #nextgenerationSemiconductors #opticalSemiconductors #NonDestructiveTesting #LifePrediction #UltrashortpulseLasers #UltrahighpowerLasers #SatelliteOptoelectronics #RemoteSensing #GeoThermalpower #RegenerativeEnergy #GlobalWarming #CimateCange #GreenhouseGses #Defense #EnemystrikeCapability #QuantumBrain #QuantumBrain #QuantumArtificialIntelligence #ArtificialBrain #QuantumInterference #cerebralnerves #nextgenerationDefense #DefenseEectronics #Defense #RenewableEergy #LongerInfraStructurelife #MEGAEarthquakePrediction #TerroristDeterrence #NonDestructivetesting #LifespanPrediction #ExplosiveDetection #TerroristDetection #EplosiveDetection #VolcaniceruptionPrediction #EnemybaseAtackCpability #ICBMInterception #RemoteSensing #BioResourceGowthEnvironmentAssessment #VolcanicTremorDetection #volcanicEruptiongGasDetection #GreenhousegasDetection #GlobalWarmingPrevention #ArtificialIntelligence #BrainScience #AI #MissileDefense #MissileInterception #Nuclearweaponsdisablement #Nuclearbaseattack #Defensiveweapons #eruptionPrediction #EarthquakePrediction #QuantumBrain #QuantumConsciousness #QuantumMind #QuntumBrain #QuntumBrainComputing #QuntumBrainComputer #AtificialBrain #ArtificialIntelligence #BrainComputing