Quantum Approaches Review to
Quantum Mind

(Quantum Science and Technology)

 
 

Quantum Physicist and Brain Scientist 
Visiting Professor of Quantum Physics, California Institute of Technology
IEEE-USA Fellow
Ph.D. & Dr. Kazusho Kamuro
AERI:Artificial EvolutionResearch Institute
Pasadena, California
HP: https://www.aeri-japan.com/

 

1. Applying Quantum Concepts to Mental Systems
・Today there is accumulating evidence in the study of consciousness that quantum concepts like complementarity, entanglement, dispersive states, and non-Boolean logic play significant roles in mental processes. Corresponding quantum-inspired approaches address purely mental (psychological) phenomena using formal features also employed in quantum physics, but without involving the full-fledged framework of quantum mechanics or quantum field theory. The term “quantum cognition” has been coined to refer to this new area of research. Perhaps a more appropriate characterization would be non-commutative structures in cognition.
・On the surface, this seems to imply that the brain activity correlated with those mental processes is in fact governed by quantum physics. The quantum brain approaches discussed in Section 3 represent attempts that have been proposed along these lines. But is it necessarily true that quantum features in psychology imply quantum physics in the brain?
・A formal move to incorporate quantum behavior in mental systems, without referring to quantum brain activity, is based on a state space description of mental systems. If mental states are defined on the basis of cells of a neural state space partition, then this partition needs to be well tailored to lead to robustly defined states. Ad hoc chosen partitions will generally create incompatible descriptions (Atmanspacher and beim Graben 2007) and states may become entangled (beim Graben et al. 2013).
・This implies that quantum brain dynamics is not the only possible explanation of quantum features in mental systems. Assuming that mental states arise from partitions of neural states in such a way that statistical neural states are co-extensive with individual mental states, the nature of mental processes depends strongly on the kind of partition chosen. If the partition is not properly constructed, it is likely that mental states and observables show features that resemble quantum behavior although the correlated brain activity may be entirely classical: quantum mind without quantum brain.
・Intuitively, it is not difficult to understand why non-commuting operations or non-Boolean logic should be relevant, even inevitable, for mental systems that have nothing to do with quantum physics. Simply speaking, the non-commutativity of operations means nothing else than that the sequence, in which operations are applied, matters for the final result. And non-Boolean logic refers to propositions that may have unsharp truth values beyond yes or no, shades of plausibility or credibility as it were. Both versions obviously abound in psychology and cognitive science (and in everyday life). Pylkkänen (2015) has even suggested to use this intuitive accessibility of mental quantum features for a better conceptual grasp of quantum physics.
・The particular strength of the idea of generalizing quantum theory beyond quantum physics is that it provides a formal framework which both yields a transparent well-defined link to conventional quantum physics and has been used to describe a number of concrete psychological applications with surprisingly detailed theoretical and empirical results. Corresponding approaches fall under the third category mentioned in Section 3: further developments or generalizations of quantum theory.
・One rationale for the focus on psychological phenomena is that their detailed study is a necessary precondition for further questions as to their neural correlates. Therefore, the investigation of mental quantum features resists the temptation to reduce them (within scenario A) all-too quickly to neural activity. There are several kinds of psychological phenomena which have been addressed in the spirit of mental quantum features so far: (i) decision processes, (ii) order effects, (iii) bistable perception, (iv) learning, (v) semantic networks, (vi) quantum agency,and (vii) super-quantum entanglement correlations. These topics will be outlined in some more detail in the following Section ( 2. Concrete Applications ).
・It is a distinguishing aspect of these approaches that they have led to well-defined and specific theoretical models with empirical consequences and novel predictions. A second point worth mentioning is that by now there are a number of research groups worldwide (rather than solitary actors) studying quantum ideas in cognition, partly even in collaborative efforts. For about a decade there have been regular international conferences with proceedings for the exchange of new results and ideas, and target articles, special issues, and monographs have been devoted to basic frameworks and new developments (Khrennikov 1999, Atmanspacher et al. 2002, Busemeyer and Bruza 2012, Haven and Khrennikov 2013, Wendt 2015).
2. Concrete Applications
2.1 Decision Processes

・An early precursor of work on decision processes is due to Aerts and Aerts (1994). However, the first detailed account appeared in a comprehensive publication by Busemeyer et al. (2006). The key idea is to define probabilities for decision outcomes and decision times in terms of quantum probability amplitudes. Busemeyer et al. found agreement of a suitable Hilbert space model (and disagreement of a classical alternative) with empirical data. Moreover, they were able to clarify the long-standing riddle of the so-called conjunction and disjunction effects (Tversky and Shafir 1992) in decision making (Pothos and Busemeyer 2009). Another application refers to the asymmetry of similarity judgments (Tversky 1977), which can be adequately understood by quantum approaches (see Aerts et al. 2011, Pothos et al. 2013).
2.2 Order Effects
・Order effects in polls, surveys, and questionnaires, recognized for a long time (Schwarz and Sudman 1992), are still insufficiently understood today. Their study as contextual quantum features (Aerts and Aerts 1994, Busemeyer et al. 2011) offers the potential to unveil a lot more about such effects than the well-known fact that responses can drastically alter if questions are swapped. Atmanspacher and Römer (2012) proposed a complete classification of possible order effects (including uncertainty relations, and independent of Hilbert space representations), and Wang et al. (2014) discovered a fundamental covariance condition (called the QQ equation) for a wide class of order effects.
・An important issue for quantum mind approaches is the complexity or parsimony of Hilbert space models as compared to classical (Bayesian, Markov, etc.) models. Atmanspacher and Römer (2012) as well as Busemeyer and Wang (2018) addressed this issue for order effects, with the result that quantum approaches generally require less free variables than competing classical models and are, thus, more parsimonious and more stringent than those. Busemeyer and Wang (2017) studied how measuring incompatible observables sequentially induces uncertainties on the second measurement outcome.
2.3 Bistable Perception
・The perception of a stimulus is bistable if the stimulus is ambiguous, such as the Necker cube. This bistable behavior has been modeled analagous to the physical quantum Zeno effect. (Note that this differs from the quantum Zeno effect as used in Section 3.2.) The resulting Necker-Zeno model predicts a quantitative relation between basic psychophysical time scales in bistable perception that has been confirmed experimentally (see Atmanspacher and Filk 2013 for review).
・Moreover, Atmanspacher and Filk (2010) showed that the Necker-Zeno model violates temporal Bell inqualitities for particular distinguished states in bistable perception.[15] This theoretical prediction is yet to be tested experimentally and would be a litmus test for quantum behavior in mental systems. Such states have been denoted as temporally nonlocal in the sense that they are not sharply (pointwise) localized along the time axis but appear to be stretched over an extended time interval (an extended present). Within this interval, relations such as “earlier” or “later” are illegitimate designators and, accordingly, causal connections are ill-defined.
2.4 Learning Processes
・Another quite obvious arena for non-commutative behavior is learning behavior. In theoretical studies, Atmanspacher and Filk (2006) showed that in simple supervised learning tasks small recurrent networks not only learn the prescribed input-output relation but also the sequence in which inputs have been presented. This entails that the recognition of inputs is impaired if the sequence of presentation is changed. In very few exceptional cases, with special characteristics that remain to be explored, this impairment is avoided.
2.5 Semantic Networks
・The difficult issue of meaning in natural languages is often explored in terms of semantic networks. Gabora and Aerts (2002) described the way in which concepts are evoked, used, and combined to generate meaning depending on contexts. Their ideas about concept association in evolution were further developed by Gabora and Aerts (2009). A particularly thrilling application is due to Bruza et al. (2015), who challenged a long-standing dogma in linguistics by proposing that the meaning of concept combinations (such as “apple chip”) is not uniquely separable into the meanings of the combined concepts (“apple” and “chip”). Bruza et al. (2015) refer to meaning relations in terms of entanglement-style features in quantum representations of concepts and reported first empirical results in this direction.
2.6 Quantum Agency
・A quantum approach for understanding issues related to agency, intention, and other controversial topics in the philosophy of mind has been proposed by Briegel and Müller (2015), see also Müller and Briegel (2018). This proposal is based on work on quantum algorithms for reinforcement learning in neural networks (“projective simulation”, Paparo et al. 2012), which can be regarded as a variant of quantum machine learning (Wittek 2014). The gist of the idea is how agents can develop agency as a kind of independence from their environment and the deterministic laws governing it (Briegel 2012). The behavior of the agent itself is simulated as a non-deterministic quantum random walk in its memory space.
2.7 Super-Quantum Correlations
・Quantum entanglement implies correlations exceeding standard classical correlations (by violating Bell-type inequalitites) but obeying the so-called Tsirelson bound. However, this bound does not exhaust the range by which Bell-type correlations can be violated in principle. Popescu and Rohrlich (1994) found such correlations for particular quantum measurements, and the study of such super-quantum correlations has become a vivid field of contemporary research, as the review by Popescu (2014) shows.
・One problem in assessing super-quantum correlations in mental systems is to delineate genuine (non-causal) quantum-type correlations from (causal) classical correlations that can be used for signaling. Dzhafarov and Kujala (2013) derived a compact way to do so and subtract classical context effects such as priming in mental systems so that true quantum correlations remain. See Cervantes and Dzhafarov (2018) for empirical applications, and Atmanspacher and Filk (2019) for further subtleties.
--------------------------------------------
Prof. PhD.Dr. Kamuro
Quantum Physicist and Brain Scientist involved in Caltech & AERI Assosiate Professor and Brain Scientistficial Evolution Research Institute(AERI: https://www.aeri-japan.com/
IEEE-USA Fellow 
Ph.D. & Dr. Kazuto Kamuro
https://www.aeri-japan.com
email: info@aeri-japan.com

--------------------------------------------
Keywords Artificial EvolutionResearch Institute:AERI 
HP: https://www.aeri-japan.com/
#artificialbrain #artificialintelligence  #quantumsemiconductor #quantumphysics #biocomputer #brainscience #quantumcomputer #AI #neuralconnectiondevice #quantuminterference #quantumartificialintelligence #geothermalpower #missiledefense #missileintercept #nucleardeterrence #quantumbrain #domesticresiliency #quantumphysics #biologyphysics #brain-machineinterface #BMI #nanosizesemiconductors #ultraLSI #nextgenerationsemiconductors #opticalsemiconductors #nondestructivetesting #lifeprediction #ultrashortpulselasers #ultrahighpowerlasers #satelliteoptoelectronics #remotesensing #geothermalpower #regenerativeenergy #globalglobalwarming #climatechange #greenhousegases #defense #enemystrikecapability #quantumbrain #quantumbrain #quantumartificialintelligence #artificialbrain #quantuminterference #cerebralnerves #nextgenerationdefense #defenseelectronics #defense #renewableenergy #longerinfrastructurelife #MEGAearthquakeprediction #terroristdeterrence #nondestructivetesting #lifespanprediction #explosivedetection #terroristdetection #explosivedetection #volcaniceruptionprediction #enemybaseattackcapability #ICBMinterception #remotesensingforplantandbioresourcegrowthenvironmentassessment #volcanictremordetection #volcaniceruptiongasdetection #greenhousegasdetection #Globalwarmingprevention #artificialintelligence #brainscience #AI #missiledefense #missileinterception #nuclearweaponsdisablement #nuclearbaseattack #defensiveweapons #eruptionprediction #earthquakeprediction #QuantumBrain #QuantumConsciousness #QuantumMind #QuntumBrain #QuntumBrainComputer #BrainComputing #AtificialBrain #ArtificialIntelligence