ShikenPASSのClouderaのCCA175 試験復習試験トレーニング資料を手に入れたら、我々は一年間の無料更新サービスを提供します。それはあなたがいつでも最新の試験資料を持てるということです。試験の目標が変わる限り、あるいは我々の勉強資料が変わる限り、すぐに更新して差し上げます。あなたのニーズをよく知っていていますから、あなたに試験に合格する自信を与えます。
お客様に自分に一番ふさわしいClouderaのCCA175 試験復習試験の復習方式を提供するために、我々はClouderaのCCA175 試験復習の資料の3つのバーションを提供します。PDF、オンライン版とソフト版です。あなたの試験準備にヘルプを提供するのは常にあります。すべてのバーションは無料のデモを提供します。そのほかに、どのバーションでも全面的で最新版のClouderaのCCA175 試験復習の資料を提供します。
もし君がサラリーマンで、もし君が早い時間でClouderaのCCA175 試験復習認定試験に合格したいなら、ShikenPASSは君のベストな選択になります。うちのClouderaのCCA175 試験復習学習教材はShikenPASSのIT専門家たちが研究して、実践して開発されたものです。それは十年過ぎのIT認証経験を持っています。うちの商品を使ったら、君は最も早い時間で、簡単に認定試験に合格することができます。
試験番号:CCA175
試験科目:「CCA Spark and Hadoop Developer Exam」
一年間無料で問題集をアップデートするサービスを提供いたします
最近更新時間:2018-04-27
問題と解答:全96問 CCA175 テスト資料
NO.1 CORRECT TEXT
Problem Scenario 35 : You have been given a file named spark7/EmployeeName.csv
(id,name).
EmployeeName.csv
E01,Lokesh
E02,Bhupesh
E03,Amit
E04,Ratan
E05,Dinesh
E06,Pavan
E07,Tejas
E08,Sheela
E09,Kumar
E10,Venkat
1. Load this file from hdfs and sort it by name and save it back as (id,name) in results directory.
However, make sure while saving it should be able to write In a single file.
Answer:
See the explanation for Step by Step Solution and configuration.
Explanation:
Solution:
Step 1 : Create file in hdfs (We will do using Hue). However, you can first create in local filesystem
and then upload it to hdfs.
Step 2 : Load EmployeeName.csv file from hdfs and create PairRDDs
val name = sc.textFile("spark7/EmployeeName.csv")
val namePairRDD = name.map(x=> (x.split(",")(0),x.split(",")(1)))
Step 3 : Now swap namePairRDD RDD.
val swapped = namePairRDD.map(item => item.swap)
step 4: Now sort the rdd by key.
val sortedOutput = swapped.sortByKey()
Step 5 : Now swap the result back
val swappedBack = sortedOutput.map(item => item.swap}
Step 6 : Save the output as a Text file and output must be written in a single file.
swappedBack. repartition(1).saveAsTextFile("spark7/result.txt")
NO.2 CORRECT TEXT
Problem Scenario 89 : You have been given below patient data in csv format,
patientID,name,dateOfBirth,lastVisitDate
1001,Ah Teck,1991-12-31,2012-01-20
1002,Kumar,2011-10-29,2012-09-20
1003,Ali,2011-01-30,2012-10-21
Accomplish following activities.
1 . Find all the patients whose lastVisitDate between current time and '2012-09-15'
2 . Find all the patients who born in 2011
3 . Find all the patients age
4 . List patients whose last visited more than 60 days ago
5 . Select patients 18 years old or younger
Answer:
See the explanation for Step by Step Solution and configuration.
Explanation:
Solution :
Step 1:
hdfs dfs -mkdir sparksql3
hdfs dfs -put patients.csv sparksql3/
Step 2 : Now in spark shell
// SQLContext entry point for working with structured data
val sqlContext = neworg.apache.spark.sql.SQLContext(sc)
// this is used to implicitly convert an RDD to a DataFrame.
import sqlContext.impIicits._
// Import Spark SQL data types and Row.
import org.apache.spark.sql._
// load the data into a new RDD
val patients = sc.textFilef'sparksqIS/patients.csv")
// Return the first element in this RDD
patients.first()
//define the schema using a case class
case class Patient(patientid: Integer, name: String, dateOfBirth:String , lastVisitDate:
String)
// create an RDD of Product objects
val patRDD = patients.map(_.split(M,M)).map(p => Patient(p(0).tolnt,p(1),p(2),p(3))) patRDD.first()
patRDD.count(}
// change RDD of Product objects to a DataFrame val patDF = patRDD.toDF()
// register the DataFrame as a temp table patDF.registerTempTable("patients"}
// Select data from table
val results = sqlContext.sql(......SELECT* FROM patients '.....)
// display dataframe in a tabular format
results.show()
//Find all the patients whose lastVisitDate between current time and '2012-09-15' val results =
sqlContext.sql(......SELECT * FROM patients WHERE
TO_DATE(CAST(UNIX_TIMESTAMP(lastVisitDate, 'yyyy-MM-dd') AS TIMESTAMP))
BETWEEN '2012-09-15' AND current_timestamp() ORDER BY lastVisitDate......) results.showQ
/.Find all the patients who born in 2011
val results = sqlContext.sql(......SELECT * FROM patients WHERE
YEAR(TO_DATE(CAST(UNIXJTlMESTAMP(dateOfBirth, 'yyyy-MM-dd') AS
TIMESTAMP))) = 2011 ......)
results. show()
//Find all the patients age
val results = sqlContext.sql(......SELECT name, dateOfBirth, datediff(current_date(),
TO_DATE(CAST(UNIX_TIMESTAMP(dateOfBirth, 'yyyy-MM-dd') AS TlMESTAMP}}}/365
AS age
FROM patients
Mini >
results.show()
//List patients whose last visited more than 60 days ago
-- List patients whose last visited more than 60 days ago
val results = sqlContext.sql(......SELECT name, lastVisitDate FROM patients WHERE
datediff(current_date(), TO_DATE(CAST(UNIX_TIMESTAMP[lastVisitDate, 'yyyy-MM-dd')
AS T1MESTAMP))) > 60......);
results. showQ;
-- Select patients 18 years old or younger
SELECT' FROM patients WHERE TO_DATE(CAST(UNIXJTlMESTAMP(dateOfBirth,
'yyyy-MM-dd') AS TIMESTAMP}) > DATE_SUB(current_date(),INTERVAL 18 YEAR); val results =
sqlContext.sql(......SELECT' FROM patients WHERE
TO_DATE(CAST(UNIX_TIMESTAMP(dateOfBirth, 'yyyy-MM--dd') AS TIMESTAMP)) >
DATE_SUB(current_date(), T8*365)......);
results. showQ;
val results = sqlContext.sql(......SELECT DATE_SUB(current_date(), 18*365) FROM patients......);
results.show();
NO.3 CORRECT TEXT
Problem Scenario 40 : You have been given sample data as below in a file called spark15/file1.txt
3070811,1963,1096,,"US","CA",,1,
3022811,1963,1096,,"US","CA",,1,56
3033811,1963,1096,,"US","CA",,1,23
Below is the code snippet to process this tile.
val field= sc.textFile("spark15/f ilel.txt")
val mapper = field.map(x=> A)
mapper.map(x => x.map(x=> {B})).collect
Please fill in A and B so it can generate below final output
Array(Array(3070811,1963,109G, 0, "US", "CA", 0,1, 0)
,Array(3022811,1963,1096, 0, "US", "CA", 0,1, 56)
,Array(3033811,1963,1096, 0, "US", "CA", 0,1, 23)
)
Answer:
See the explanation for Step by Step Solution and configuration.
Explanation:
Solution :
A. x.split(","-1)
B. if (x. isEmpty) 0 else x
NO.4 CORRECT TEXT
Problem Scenario 49 : You have been given below code snippet (do a sum of values by key}, with
intermediate output.
val keysWithValuesList = Array("foo=A", "foo=A", "foo=A", "foo=A", "foo=B", "bar=C",
"bar=D", "bar=D")
val data = sc.parallelize(keysWithValuesl_ist}
//Create key value pairs
val kv = data.map(_.split("=")).map(v => (v(0), v(l))).cache()
val initialCount = 0;
val countByKey = kv.aggregateByKey(initialCount)(addToCounts, sumPartitionCounts)
Now define two functions (addToCounts, sumPartitionCounts) such, which will produce following
results.
Output 1
countByKey.collect
res3: Array[(String, Int)] = Array((foo,5), (bar,3))
import scala.collection._
val initialSet = scala.collection.mutable.HashSet.empty[String]
val uniqueByKey = kv.aggregateByKey(initialSet)(addToSet, mergePartitionSets)
Now define two functions (addToSet, mergePartitionSets) such, which will produce following results.
Output 2:
uniqueByKey.collect
res4: Array[(String, scala.collection.mutable.HashSet[String])] = Array((foo,Set(B, A}},
(bar,Set(C, D}}}
Answer:
See the explanation for Step by Step Solution and configuration.
Explanation:
Solution :
val addToCounts = (n: Int, v: String) => n + 1
val sumPartitionCounts = (p1: Int, p2: Int} => p1 + p2
val addToSet = (s: mutable.HashSet[String], v: String) => s += v
val mergePartitionSets = (p1: mutable.HashSet[String], p2: mutable.HashSet[String]) => p1
+ += p2
ShikenPASSは最新の70-745試験問題集と高品質のMB6-897認定試験の問題と回答を提供します。ShikenPASSの70-342 VCEテストエンジンとC-HANATEC-13試験ガイドはあなたが一回で試験に合格するのを助けることができます。高品質の400-151トレーニング教材は、あなたがより迅速かつ簡単に試験に合格することを100%保証します。試験に合格して認証資格を取るのはそのような簡単なことです。