論文No1450

 

Hypoxic Pulmonary Vasoconstriction Does Not Explain All Regional Perfusion Redistribution in Asthma

 

Vanessa J. Kelly, Kathryn A. Hibbert, Puja Kohli, Mamary Kone, Elliot E. Greenblatt, Jose G. Venegas, Tilo Winkler, R. Scott Harris

 

AJRCCM, Vol. 196, No. 7 | Oct 01,  pp. 834–844, 2017

 

<背景>

喘息で気道狭窄のある患者の局所的低換気は空間的な循環減少と関連しており、低酸素性肺血管攣縮(HPV)に至ると説明されている。

 

<目的>

喘息で気道狭窄のある患者で局所的な循環再分布におけるHPVの役割を検討する。

 

<方法>

喘息患者8名がベースライン時、気道狭窄時にPET検査、CTによる肺画像検査を受けた。

空気呼吸下、80%酸素(80% O2)呼吸下で別の日に検査した。

相対的循環、特異的換気(sV)、ガス分画(Fgas)を、最低の特異的換気の25%以下の肺(sVlow)および残りの肺(sVhigh)で定量し、比較した。

 

<結果>

sVlow領域では気道狭窄は空気呼吸下、80% O2ともに有意にsVの減少をきたした(baseline vs. bronchoconstriction, mean ± SD, 1.02 ± 0.20 vs. 0.35 ± 0.19 and 1.03 ± 0.20 vs. 0.32 ± 0.16, respectively; P < 0.05)。

sVlow領域では相対的循環は空気呼吸下では気道狭窄後に減少した。

程度は少ないが80% O2吸入下でも減少した (1.02 ± 0.19 vs. 0.72 ± 0.08 [P < 0.001] and 1.08 ± 0.19 vs. 0.91 ± 0.12 [P < 0.05], respectively)。

Fgasの気道狭窄後の増加は空気呼吸下で起こった (0.99 ± 0.04 vs. 1.00 ± 0.02; P < 0.05)。

sVlowの亜区域解析では、相対的循環の減少のいくらかは80%酸素下の気道狭窄で局所的な低酸素の存在の結果として起こった。

しかし、80%酸素で酸素が十分あってもsVlow領域で相対的な循環減少が有意に起こった。

 

<感想>

喘息患者で気道狭窄後の循環再分布はHPVだけで起こるわけではなかったようです。

他の低酸素に関係ないメカニズムも関与している可能性があったようです。

狭窄した気道、肺間質、肺胞毛細血管の相互作用か細胞内シグナルによるのかもしれません。

 

 

Rationale: Regional hypoventilation in bronchoconstricted patients with asthma is spatially associated with reduced perfusion, which is proposed to result from hypoxic pulmonary vasoconstriction (HPV).

Objectives: To determine the role of HPV in the regional perfusion redistribution in bronchoconstricted patients with asthma.

Methods: Eight patients with asthma completed positron emission tomographic/computed tomographic lung imaging at baseline and after bronchoconstriction, breathing either room air or 80% oxygen (80% O2) on separate days. Relative perfusion, specific ventilation (sV), and gas fraction (Fgas) in the 25% of the lung with the lowest specific ventilation (sVlow) and the remaining lung (sVhigh) were quantified and compared.

Measurements and Main Results: In the sVlow region, bronchoconstriction caused a significant decrease in sV under both room air and 80% O2 conditions (baseline vs. bronchoconstriction, mean ± SD, 1.02 ± 0.20 vs. 0.35 ± 0.19 and 1.03 ± 0.20 vs. 0.32 ± 0.16, respectively; P < 0.05). In the sVlow region, relative perfusion decreased after bronchoconstriction under room air conditions and also, to a lesser degree, under 80% O2 conditions (1.02 ± 0.19 vs. 0.72 ± 0.08 [P < 0.001] and 1.08 ± 0.19 vs. 0.91 ± 0.12 [P < 0.05], respectively). The Fgas increased after bronchoconstriction under room air conditions only (0.99 ± 0.04 vs. 1.00 ± 0.02; P < 0.05). The sVlow subregion analysis indicated that some of the reduction in relative perfusion after bronchoconstriction under 80% O2 conditions occurred as a result of the presence of regional hypoxia. However, relative perfusion was also significantly reduced in sVlow subregions that were hyperoxic under 80% O2 conditions.

Conclusions: HPV is not the only mechanism that contributes to perfusion redistribution in bronchoconstricted patients with asthma, suggesting that another nonhypoxia mechanism also contributes. We propose that this nonhypoxia mechanism may be either direct mechanical interactions and/or unidentified intercellular signaling between constricted airways, the parenchyma, and the surrounding vasculature.