原発は、熱、化学物質、放射能の三位一体の毒物

 

 

ajw********さん

2023/6/29 13:43

▲原発で発生する核エネルギーは約1/3が発電に利用され、残り約2/3は廃温水となって捨てられます。こんなに効率の悪いエネルギー設備は他にありません。こんな原発が半世紀以上に渡り重宝されるのは、ひとえに地上で最強と言われる核兵器の原料プルトニウムがつくられるからにほかなりません(核兵器より強力な兵器(電磁波銃、プラズマ銃等)が開発されると原発は一夜にして消滅すると言われます)。

 ▲地球温暖化問題は人類喫緊の課題となり、大気のCO2削減を中心に対策が論じられていますが、大海の温暖化問題も勝るとも劣らない程重要です。人工的に多量の温水をつくる原発の廃温水問題は懸念のポイントですが、原発推進国=核保有国=米英仏中ロの圧力によりこの問題は不問にされているのがなお問題です。 

▲日本での原発密集地は福井県にある若狭湾です。自然豊かなこの湾には過っては13基近い原発が設置され、現在でも7基は稼働(計画含む)中です。この湾に流れ込む大河は由良川(平均水量:4,040,000m3/日)ですが、原発の廃温水は一基でほぼ由良川と同じ(高浜4号復水器冷却流量:5,500,000m3/日)と言われます。排水温は+7℃となるように調整されていますが、湾内の温水化はさけられません。

 ▲若狭湾の生態系に関する講演会(テーマ:魚の目線で考える環境問題、2019,05,19武庫川)では、湾内には多くの熱帯魚が住み付き、本来の原生魚は少なくなったことが報告されました。(福島事故時、当湾内の原発も一斉に停止したため、寒流が戻り熱帯魚は全滅した。現在では熱帯魚楽園が復活しているとのこと) 

▲サバは寒流魚で、熱帯魚が住む環境では生息できません。若狭湾内では今、養殖などできない環境になっています。自然を取り戻すべく原発を止め、地熱を始め、風力、太陽光等の再エネ活用は喫緊の課題です。

 

ー・ー・ー・ー・ー・ー・ー・ー・ー・ー・ー・ー・ー・ー

2週間天気 年末年始 10年に1度レベルの暖かさ 多雪地域は除雪中の事故に注意

画像:tenki.jp

この先、寒気の影響はあまり受けず、気温は全国的に高くなる傾向。寒波の影響で大雪になった地域では、除雪中の事故や屋根からの落雪などにご注意を。

25日(月)~31日(日) 週の中頃 北日本は荒天に

明日25日(月)から26日(火)にかけては、寒気を伴った気圧の谷が通過し、日本海側を中心に大気の状態が不安定となるでしょう。山陰から北陸の平地では雨の降る所が多く、東北や北海道では雪の降り方が強まることもありそうです。落雷や突風にご注意ください。 27日(水)は、北日本を中心に冬型の配置になるでしょう。東北や北海道は日本海側を中心に雪で、ふぶく所もありそうです。ただ、ここ数日のように、寒気が長く居座ることはないでしょう。 28日(木)と29日(金)は高気圧に覆われて、広い範囲で晴れる見込みです。30日(土)から31日(日)大晦日は、南の海上を低気圧が進む予想で、太平洋側でも一時的に雨が降るでしょう。 気温は、全国的に平年並みか高い日が多くなりそうです。関東から西では、最高気温が15℃前後まで上がる日もあり、昼間は冬のコートが邪魔になるくらいです。 28日(木)頃からは、10年に1度程度しか起きないような著しい高温になる可能性があるとして、気象庁から「高温に関する早期天候情報」が九州から北海道に発表されています。雪が多く積もっている地域では、屋根からの落雪やなだれにご注意ください。

1月1日(月)~6日(土) 三が日 春先のような暖かさ

画像:tenki.jp

2024年のスタートも、暖かい空気が優勢となりそうです。ただ、低気圧の影響で、スッキリと晴れる日は少ないでしょう。 1月1日(月)元日と2日(火)、4日(木)から5日(金)にかけては、近畿から関東など太平洋側で雨の降る時間がありそうです。日本海側は雲が広がりやすく、所々で雨や雪が降るでしょう。6日(土)は西から雨の範囲が広がる予想です。 年明け後も、1月としては気温の高い日が続くでしょう。三が日が特に暖かく、3日(水)の東京都心の最高気温は18℃と、桜が咲く頃の陽気になりそうです。ただ、朝晩は各地で冷えますので、服装でうまく調節してください。 まだ先の予報のため、雨が降るタイミングや気温の予想には幅があります。最新の予報をご確認ください。

 

 

 

 

 

原発温廃水が海を壊す

原発からは温かい大河が流れている

小出裕章

(元京都大学原子炉実験所助教)

2010/03/26

 原子力発電所の稼働に不可欠な冷却水は、その膨大な熱とともに放射能や化学物質をともなって海に排出される。この温廃水温排水 hot waste water)の存在、あるいは環境への影響が論じられることは少ない。地球温暖化への貢献を旗印として原子力回帰が叫ばれる中、けっして避けられない温廃水の問題を浮き彫りにする。

蒸気機関としての宿命

 地球は46億年前に誕生したといわれる。その地球に人類が誕生したのは約400万年前。地球の歴史を1年に縮めて考えれば、人類の誕生は大みそかの夕方になってからにすぎない。その人類も当初は自然に寄り添うように生活していたが、18世紀最後の産業革命を機に、地球環境との関係が激変した。それまでは家畜や奴隷を使ってぜいたくをしてきた一部の人間が、蒸気機関の発明によって機械を動かせるようになった。以降、大量のエネルギーを使うようになり、産業革命以降の200年で人類が使ったエネルギーは、人類が全歴史で使ったエネルギー総量の6割を超える。その結果、地球の生命環境が破壊され、多数の生物が絶滅に追いやられるようになった。その期間を、地球の歴史を1年に縮めた尺度に合わせれば、大みそかの夜11時59分59秒からわずか1秒でのことである。
 今日利用されている火力発電も原子力発電も、発生させた蒸気でタービンを回す蒸気機関で、基本的に200年前の産業革命のときに誕生した技術である。その理想的な熱効率は、次の式で表される。
 理想的な熱機関の効率=1-(低温熱源の温度÷高温熱源の温度)
(※それぞれの温度には「K(ケルビン)」の単位で表す絶対温度を用い、「℃」で表す摂氏温度の数字に「273」を加え、たとえば0℃=273K、100℃=373Kとなる)
 だが、現実の装置ではロスも生じるため、この式で示されるような理想的な熱効率を達成することはできない。火力発電や原子力発電の場合、「低温熱源」は冷却水で、日本では海水を使っているので、その温度は地域差や季節差を考慮しても300K(27℃)程度であり、一方の「高温熱源」は炉で熱せられ、タービンに送られる蒸気である。そのため、火力発電と原子力発電の熱効率は、基本的にそれらが発生しうる蒸気の温度で決まり、その温度が高いほど、熱効率も上がることになる。現在稼働している原子力発電では、燃料の健全性を維持するため冷却水の温度を高くすることができず、タービンの入り口での蒸気の温度はせいぜい550K(約280℃)で、実際の熱効率は0.33、すなわち33%しかない。つまり、利用したエネルギーの2倍となる67%のエネルギーを無駄に捨てる以外にない。

 

 

想像を絶する膨大さ

 この無駄に捨てるエネルギーは、想像を絶するほど膨大である。たとえば、100万kWと呼ばれる原子力発電所の場合、約200万kW分のエネルギーを海に捨てることになり、このエネルギーは1秒間に70tの海水の温度を7℃上昇させる。日本には、1秒間に70tの流量を超える川は30筋もない。原子力発電所を作るということは、その敷地に忽然として「温かい大河」を出現させることになる。
 7℃の温度上昇がいかに破滅的かは、入浴時の湯の温度を考えれば分かる。ふだん入っている風呂の温度を7℃上げてしまえば、普通の人なら入れないはずである。しかし、海には海の生態系があって、その場所に適したたくさんの生物が生きている。その生物たちからみれば、海は生活の場であり、その温度が7℃も上がってしまえば、その場では生きられない。逃げることのできない植物や底生生物は死滅し、逃げることができる魚類は温廃水の影響範囲の外に逃げることになる。人間から見れば、近海は海産資源の宝庫であるが、漁業の形態も変える以外にない。
 

途方もない環境破壊源

 

 雨は地球の生態系を持続させるうえで決定的に重要なもので、日本はその恵みを受けている貴重な国の一つである。日本には毎年6500億tの雨が降り、それによって豊かな森林が育ち、長期にわたる稲作も持続的に可能になってきた。雨のうち一部は蒸発し、一部は地下水となるため、日本の河川の総流量は年間約4000億tである。一方、現在日本には54基、電気出力で約4900万kWの原子力発電所があり、それが流す温廃水の総量は年間1000億tに達する。日本近海の海水温の上昇は世界平均に比べて高く、特に日本海の温度上昇は著しい。原発の温廃水は、日本のすべての川の水の温度を約2℃温かくすることに匹敵し、これで温暖化しなければ、その方がおかしい。そのうえ、温められた海水からは、溶け込んでいた二酸化炭素(CO2)が大量に放出される。もし、二酸化炭素が地球温暖化の原因だとするなら、その効果も無視できない。

 もちろん、日本には原子力発電所を上回る火力発電所が稼働していて、それらも冷却水として海水を使っている。しかし、最近の火力発電所では770K(約500℃)を超える高温の蒸気を利用できるようになり、熱効率は50%を超えている。つまり、100万kWの火力発電所の場合、無駄に捨てるエネルギーは100万kW以下で済む。もし、原子力発電から火力発電に転換することができれば、それだけで海に捨てる熱を半分以下に減らせる。さらに、火力発電所を都会に建ててコージェネレーション(cogeneration)、すなわち無駄に捨てるはずの熱を熱源として活用すれば、総合的なエネルギー効率を80%にすることもできる。しかし、原子力発電所は決して都会には建てられない。
 

熱、化学物質、放射能の三位一体の毒物

 

 温廃水は単に熱いだけではなく、化学物質と放射性物質も混入させられた三位一体の毒物である。まず、海水を敷地内に引き込む入り口で、生物の幼生を殺すための化学物質が投入される。なぜなら海水を施設内に引き込む配管表面にフジツボやイガイなどが張り付き、配管が詰まってしまっては困るからである。さらに、敷地から出る場所では、作業員の汚染した衣服を洗濯したりする場合に発生する洗濯廃水などの放射性廃水も加えられる。
 
日本にあるほぼすべての原子力施設は、原子炉等規制法、放射線障害防止法の規制に基づき、放射性物質を敷地外に捨てる場合に濃度規制を受ける。原子力発電所の場合、温廃水という毎日数百万tの流量をもつ「大河」がある。そのため、いかなる放射性物質も十分な余裕をもって捨てることができる。洗濯廃水も洗剤が含まれているため廃水処理が難しい。原子力発電所から見れば、苦労して処理するよりは薄めて流すほうが得策である。
 
 たとえば、昨今話題となる核燃料サイクルを実現するための核燃料再処理工場は、原子力発電所以上に膨大な放射性物質を環境に捨てる。ところが、再処理工場には原子力発電所のような「大河」はない。そこで、再処理工場は法律の濃度規制から除外されてしまった。逆にいえば、原子力発電所にとっては、温廃水が実に便利な放射能の希釈水となっているのである