Welcome to a Digital Camera Battery specialist of the Sony Digital Camera Battery
Existing recycling processes use a combination of two inorganic acids known as "aqua regia" to dissolve noble metals, a class of materials that includes platinum, palladium, gold and silver. But because the metals are often dissolved together, impurities introduced in the recycling process may harm the efficiency of catalysts produced from the recycled materials. Now, researchers at the Georgia Institute of Technology have developed a new organic solvent process that may help address the problem – and open up new possibilities for using these metals in cancer therapeutics, microelectronics and other applications.
The new Georgia Tech solvent system uses a combination of two chemicals – thionyl chloride and a variety of organic reagents such as pyridine, N,N-dimethylformamide (DMF), pyrimidine or imidazole. The concentrations can be adjusted to preferentially with battery like sony NP-F550 battery , sony NP-FR1 battery , sony NP-FM50 battery , sony NP-FM51 battery , sony NP-F10 battery , sony NP-FE1 battery , Sharp VL-Z900W battery , Canon BP-512 battery , Canon BP-508 battery , sony DSC-T7 battery , Sony NP-68 battery , Sony NP-98 battery dissolve gold or palladium, and more importantly, no combination of the organic chemicals dissolves platinum. This ability to preferentially dissolve noble metals creates a customized system that provides a high level of control over the process.
"We need to be able to selectively dissolve these noble metals to ensure their purity in a variety of important applications," said C.P. Wong, a Regents professor in the Georgia Tech School of Materials Science and Engineering. "Though we don't fully understand how it works yet, we believe this system opens a lot of new possibilities for using these metals."
A paper describing the research was published recently in the journal Angewandte Chemie.
Catalyst systems that make use of more than one metal, such as palladium with a gold core, are becoming more widely used in industrial processes. To recycle those, the new solvent system – dubbed "organic aqua regia" – could first use a combination of thionyl chloride and DMF to dissolve out the gold, leaving hollow palladium spheres. Then the palladium spheres could be dissolved using a different combination.
Nina's World - Siemens Video Contest: Your earth, your dream, your action! Watch now. - siemens.com/answers/ninas-world
So far, the researchers have demonstrated that the solvent system can selectively dissolve gold and palladium from a mixture of gold, palladium and platinum. They have also used it to remove gold from a mixture of gold and palladium.
Beyond recycling, the new solvent system could also provide new ways of producing nanometer-scale cancer chemotherapy agents that involve these metals. And the new solvent approach could have important implications for the electronics industry, which uses noble metals that must often be removed after specific processing steps. Beyond selectivity, the new approach also offers other advantages for electronics manufacturing – no potentially harmful contamination is left behind and processing is done under mild conditions.