計算問題の文章題的なアプローチ | 野田塾中学受験部ブログ

野田塾中学受験部ブログ

野田塾中学受験部は、ベテラン講師による
「楽しくてためになる授業」と「独自の合格システム」で、
お子様を志望校合格に導きます。
中学受験部は野田塾千種校で開講しています。

いつも読んでくださり

ありがとうございます照れ 

ぴぴぴぴぴぴぴぴぴぴぴぴぴぴぴぴぴ

一見、無機質に見える計算問題…


ただひたすら

訓練するしかないプンプン問題もある一方で


中には

「文章題的な」アプローチをするコトで

瞬殺口笛できる問題もあります照れ



★お受験カテゴリーで出会った問題ですニコニコ

↓↓↓

7/9 < 13/□ < 6/7

□に入る整数は?


これは

よくある「分子の通分」ですね

分子を13に揃えて解きますニコニコ

7→13も6→13も分数倍なので

ちょっとだけ面倒ですねてへぺろ


でも、「結論から」いうと

(理由・考え方は後ほどてへぺろ)

この問題は

真ん中の分子13が

両端の分子の和(7+6)になっているので

分母も9+7の16で終了爆笑


7/9 < (7+6)/(9+7) < 6/7ってコト


ぴ分子の和/分母の和 は、

必ず2つの分数の間に収まります照れ



え、そうなの?びっくり

分子同士、分母同士をたすと

必ず2つの分数の間に収まるの?


みなさんの中には
「そんなん知ってるよニヤリ」って人も
いるかもしれませんねウインク

でも、何故それで解けるのかな?
考えてみたコトってある?


そこで

ぴいくつかの数字を当てはめて確かめる

→パズル・算数好き

ぴ文字式で証明しようとする

→理論的

ぴ公式としてそのまんま覚えちゃう

→現実的


人それぞれ照れ



さて、ここからが本題てへぺろ

今回のテーマは

「文章題的な」アプローチでしたねウインク


足し算÷足し算 をする…
そんな文章題の単元って
ありませんでしたか?ウインク


…例えば

食塩水(平均)をイメージしましょうかニコニコ
薄い食塩水と濃い食塩水を混ぜると
混ぜてできた食塩水の濃度は
「必ず」もとの2つの食塩水の濃度の

間のどこかに収まりますよねウインク


このイメージを

「そのまま利用」します

分母…食塩水
分子…食塩 とすると
分子/分母…これは濃度になりますね 

7/9(薄い方の濃度)
…9gの食塩水のうち7gが食塩


6/7(濃い方の濃度)
…7gの食塩水のうち6gが食塩


それらをまぜた
(7+6)/(9+7)
…16gの食塩水のうち13gが食塩

この濃度は

「必ず」2つの濃度の間に収まりますね

(そんな濃い食塩水なんて無いけどてへぺろ)


すなわち
7/9 < (7+6)/(9+7) < 6/7
が成り立ちましたウインク


もちろん数字を変えても

この考え方なら

分子の和/分母の和 は、

必ず2つの分数の間に収まるコトが

納得いきますね照れ



一見、無機質な計算問題

公式を覚えるコト・スピードを磨くコト

それも不可欠ウインク


そこに違った視点を持ち込むコトで

なるほどなぁ が現れるおねがい


違う単元の考え方と

有機的に繋がっているコトに気づくニコニコ

いろんな考え方があっていい照れ


それこそ

算数の醍醐味のひとつですねウインク


ぴぴぴぴぴぴぴぴぴぴぴぴぴぴぴぴぴぴ