どうやってダークマターを見つけるのか

本記事では、それぞれについて詳しく説明してみたいと思います。

最も有力な候補と目されているのは、WIMPと呼ばれる未発見の素粒子です。「弱い相互作用をする重い粒子」という意味の英語の頭文字を取って、そうした性質をもつ粒子の総称として名付けられました。重さは、陽子の100倍(約100GeV)程度以上です。他の粒子との相互作用が弱すぎて散乱の頻度が低くて見つけられない粒子なのです。英語の単語wimp自体が弱虫という意味なので、名は体を表していますね。具体的な粒子としては、まだ仮説である超対称性理論に現れる光子、もしくは、Z粒子かヒッグス粒子の相棒の総称であるニュートラリーノが、WIMPの候補として注目されています。

ニュートラリーノの見つけ方は単純です。キセノン原子などの重い原子核を数トンも用意して、ニュートラリーノがぶつかってくるのを待つ方法が、最も有力とされています。キセノン原子の中の陽子や中性子との相互作用は弱いのですが、大量にキセノンを用意すれば、確率が上がって、直接検出できるという考え方です。しかし、これまでにニュートラリーノが確実に発見された、とする報告はありません。また、高エネルギー加速器研究機構(KEK)も参加するスイス・ジュネーブにある欧州合同原子核研究機構(CERN)の大型ハドロン衝突型加速器(LHC)での加速器実験でニュートラリーノがつくられると期待されていたのですが、見つかりませんでした。

その一方、宇宙観測を用いるアイデアもあります。銀河の中心など、ダークマターの密度が濃いところで、ダークマター同士がお互いに衝突して対消滅することが期待されています。対消滅した後、ニュートラリーノならば、光や電子、クォークなど見える粒子を対生成によりつくることが理論的に予想されています。そうした2次的につくられた見える粒子を検出し、間接的にWIMPを検出するのです。現在の理解では、質量が約100GeVよりずっと重いせいで、数も少なく衝突頻度が低いのではないかという解釈がなされています。今後、ターゲットの原子の量を多くする、もしくは、検出器の感度を高めるなど装置の改良を重ねて、将来的に検出されることが期待されています。

「光の親戚」アクシオン

次の候補はアクシオンという、これまた光の親戚のような新粒子です。

もともとは、前述されたグルーオンとクォークの間の強い相互作用において、実験データと合うようにCP対称性の保存則を保つべし、という理論的要求から、その存在が予言された粒子です。アクシオンがなければ、CP非保存となってしまい、実験と矛盾します。アクシオンは強い磁石がつくる磁場の下で光子に変身するという性質をもちます。この性質を用いて、地球の周りに大量に存在しているアクシオンや、太陽の中の散乱で新しくつくられて地球に向かって飛んできているアクシオンが、磁場の下で光子に変換される様子を観測しています。アクシオンは、典型的に約1μeVの質量をもつと期待されています。μはmicro(マイクロ)で100万分の1を表します。しかし、依然として未発見で、現在の検出器の感度では足りないのではないかと解釈されています。

もしくは、前述の強い相互作用におけるCP非保存と無関係なアクシオンに似た粒子、アクシオン・ライク・パーティクル(ALP)がダークマターになっている可能性すら、活発に検討され始めています。ALPの場合は、これまでの実験では見つからないため、新しい地上もしくは宇宙での実験が数々提案されてきています。KEKのBelle II 実験では、電子と陽電子を衝突させて、数十GeVの質量をもつALPをはじめとする、典型的なWIMPより軽いダークマター候補の痕跡を探る解析も並行して行われています。

KEKも参加する日本の大型低温重力波望遠鏡KAGRA実験では、アメリカのLIGOとイタリアのVirgoという重力波検出器との共同で、重力波のデータを解析しています。KAGRA等に取り付けた検出器内のレーザーの偏光について、ALPの存在によりその偏光面が回転してしまうという性質があります。この性質を用いてALPを検出できる可能性があります。

原始ブラックホール

3つ目の候補は、筆者の推しダークマターである原始ブラックホールです。通常のブラックホールが重い恒星の最期につぶれてつくられる天体であるのと異なり、原始ブラックホールは宇宙初期に密度ゆらぎが極めて大きな部分がつぶれることで生成されます。見える物質からつくられたのではなく、火の玉の放射がつぶれてつくられたブラックホールなのです。通常のブラックホールの重さは、およそ太陽質量以上、つまり約100京トンの10億倍以上です。それに対し、原始ブラックホールがダークマターになる場合の重さは、約1000億トンから約10京トンの間と予想されています。つまり、太陽質量より桁違いに軽いのです。

これは筆者の研究で示したことなのですが、もし原始ブラックホールが約1000億トンより軽い場合、ホーキング輻射として知られているように、ガンマ線の熱輻射を出して蒸発してしまい、現在のガンマ線の観測で蒸発する様子が見えるはずです。しかし、これまでの観測からそうした現象は見られないので、原始ブラックホールがダークマターになっているなら、もっと重くないといけないということになります。

その一方、重さが約10京トンより重い場合というのは、すばる望遠鏡の観測により否定されてしまいます。すばる望遠鏡でアンドロメダ銀河の恒星をずっと観測していると、その恒星の前を原始ブラックホールが通り過ぎる場合があります。そのとき、原始ブラックホールによる重力レンズ効果で、恒星の明るさが増光することが期待されていました。しかし、実際は観測されなかったことから、重さ約10京トン以上の原始ブラックホールを完全に否定してしまいました。

将来、ガンマ線観測の感度が上がれば、残っている質量領域である、約1000億トンより重く、約10京トンより軽い原始ブラックホールが、ゆっくりと蒸発する様子が観測されるかもしれません。また、原始ブラックホールをつくる密度ゆらぎは、同時に非線形重力波をつくることが知られています。将来の感度の高い、レーザー干渉計宇宙アンテナLISAや0.1ヘルツ帯干渉計型重力波天文台DECIGOなど人工衛星での重力波観測で、その非線形重力波を観測できれば、原始ブラックホールのダークマター説が検証される可能性があります。

右巻きニュートリノ

4つ目の候補は、未発見の右巻きニュートリノです。

その質量についての条件として、すでに検出されている左巻きニュートリノの質量の30倍程度あれば、質量だけなら、ダークマターに十分足りるのです。しかし、その程度だと軽すぎて光のように飛び回るせいで、銀河をダークマターとしてつなぎ止められません。つまり、「冷たいダークマター」とはなりません。

要求される条件は、左巻きニュートリノの数万倍以上の重さ、つまり、数千eVの質量をもつ必要があります。重い右巻きニュートリノは、X線光子を出して崩壊することが理論的に予言されています。その光子を検出できれば、右巻きニュートリノがダークマターであると確定する可能性があります。また、大強度陽子加速器施設J‐PARCでのニュートリノ振動実験T2Kなどでは、ニュートリノが右巻きニュートリノに崩壊もしくは振動する痕跡も探っています。

KEKが参加するLiteBIRD衛星実験では、将来得られる詳細な宇宙マイクロ波背景放射の偏光のデータから、右巻きニュートリノダークマターを検出する可能性があります。