ダークエネルギー 現代宇宙論 【前半】
現象論的性質[編集]
![]() |
この節は検証可能な参考文献や出典が全く示されていないか、不十分です。出典を追加して記事の信頼性向上にご協力ください。(2015年3月) |
ダークエネルギーには互いに反発する性質があるため、宇宙膨張を加速する原因となりうる。これは物質優勢の宇宙という伝統的な描像で膨張の減速が起こると予想されているのとは対照的である。宇宙の加速膨張は多くの遠方の超新星の観測から示唆されている。
宇宙の全エネルギー密度の研究からも別の議論がもたらされている。理論的・観測的研究から、宇宙の全エネルギー密度は宇宙がちょうど平坦になる(すなわち、一般相対性理論で定義される時空の曲率が大きなスケールで 0 になる)ような臨界密度に非常に近いことが昔から知られている。(特殊相対性理論の E = mc2 から)エネルギーは質量と等価なので、これは通常、宇宙が平坦になるのに必要な臨界質量密度と呼ばれる。光を放出する通常の物質の観測からは、必要な質量密度の2-5%しか説明できない。この足りない質量を補うために、ダークマターと呼ばれる目に見える光を放出しない物質の存在が長い間仮定されてきた。
しかし、1990年代に行われた銀河や銀河団の観測で、ダークマターをもってしても臨界質量密度の25%しか説明できないことが強く示唆された。もしダークエネルギーが臨界エネルギー密度の残りの約70%を補えば、全エネルギー密度は宇宙が平坦であるのに必要な量と矛盾しなくなる。
ダークエネルギーの正体
![]() |
この節は検証可能な参考文献や出典が全く示されていないか、不十分です。出典を追加して記事の信頼性向上にご協力ください。(2015年3月) |
このダークエネルギーの真の正体は現状ではほぼ推測の対象にすぎない。ダークエネルギーは一般相対論の宇宙定数 (Λ) で表される真空のエネルギーではないか、と考える人々も多く、実際、これはダークエネルギーに対する最も単純な説明である。宇宙定数は、時間や宇宙膨張によらず宇宙全体に存在する一様密度のダークエネルギーと解釈できるからである。
これはアインシュタインによって導入された形式のダークエネルギーであり、我々の現在までの観測と矛盾しない。ダークエネルギーがこのような形をとるとすると、これはダークエネルギーが宇宙の持つ基本的な特徴であることを示すことになる。これとは別に、ダークエネルギーはある種の動力学的な場が粒子的に励起したものとして生まれるとする考え方もあり、クインテッセンスと呼ばれている。クインテッセンスは空間と時間に応じて変化する点で宇宙定数とは異なっている。クインテッセンスは物質のように互いに集まって構造を作るといったことがないように、非常に軽くなければならない(大きなコンプトン波長を持つ)。今のところクインテッセンスが存在する証拠は得られていないが、存在の否定もされていない。
インフレーションとの関係
![]() |
この節は検証可能な参考文献や出典が全く示されていないか、不十分です。出典を追加して記事の信頼性向上にご協力ください。(2015年3月) |
ダークエネルギーはインフレーション宇宙論と密接に関係しているという点は注意が必要である。インフレーションはダークエネルギーと定性的に同様の、何らかの反発力の存在を前提としている。これによって宇宙はビッグバンの直後に急速な指数関数的膨張を引き起こす。このような膨張はほとんどの現在の宇宙論や構造形成論の本質的な特徴である。
しかし、インフレーションは現在我々が観測しているダークエネルギーよりももっとずっと高いエネルギー密度で起きなければならないし、宇宙の一生の初期で完全に終わっているはずだと考えられている。したがって、ダークエネルギーとインフレーションの間にもし関係があるとしても、それがどのようなものなのかについては分かっていない。
ダークエネルギーが示唆する未来
![]() |
この節は検証可能な参考文献や出典が全く示されていないか、不十分です。出典を追加して記事の信頼性向上にご協力ください。(2015年3月) |
もしも仮想的なダークエネルギーが宇宙のエネルギーバランスにおいて支配的であり続けるなら、現在の宇宙膨張は加速し続け、ついにはド・ジッター宇宙として知られる文字通り指数関数的な膨張となる。
このモデルでは、重力的に束縛されていない構造は見かけ上、光速を超える速度でばらばらに飛び去ることになる。宇宙に関する我々の知識は光速より遅く伝わる信号によってしか得られないため、この加速によって最終的には、現在見えている遠方の宇宙を見ることすらできなくなる。しかし、ダークエネルギーの密度が増えなければ、銀河や太陽系など現在重力的に束縛されているどんな構造もそのまま残る。したがって我々の地球や銀河系は、宇宙の他の存在が全て我々から離れ去ってもほぼそのまま存在し続ける。
あるいは、ダークエネルギーは一定ではなく、時間とともに増えているかもしれない。「ファントムエネルギー」と呼ばれるこのシナリオでは、宇宙に存在する全てのものは原子に分解され、最後にはビッグリップによって吹き飛ばされてしまい、構造のない空っぽの宇宙が残される。
また、最終的にはダークエネルギーは時間とともに散逸し、宇宙は互いに引き合うようになるかもしれない。このような不確定性があるために、やはり重力が宇宙を支配し、やがては宇宙が自ら潰れるビッグクランチに至るという可能性も残されている。しかしこれは一般的には最も可能性の低いシナリオだと考えられている。
脚注
- ^ “全天X線監視装置搭載 X 線 CCD カメラ” (PDF). 日本マイクログラビティ応用学会誌 (日本マイクログラビティ応用学会) 28: 29-33. (2011).
- ^ a b “Planck reveals an almost perfect Universe”. ESA (2013年3月21日). 2013年7月7日閲覧。
- ^ Perlmutter, Saul; Turner, Michael S.; White, Martin (Jul 1999). “Constraining Dark Energy with Type Ia Supernovae and Large-Scale Structure”. Phys. Rev. Lett. 83 (4): 670–673. arXiv:astro-ph/9901052. doi:10.1103/PhysRevLett.83.670.
- ^ 初めて"dark energy"という語が現れた論文は、当時ターナーの学生だったDragan HutererによりArXiv.org e-print archiveに投稿された"Prospects for Probing the Dark Energy via Supernova Distance Measurements"という論文である。翌1999年、Physical Review Dにて正式にこの論文は発表された (Huterer and Turner, Phys. Rev. D 60, 081301 (1999))。しかし、このときは一般的な語としてこの言葉は使用されていた。宇宙学者のSaul Perlmutterは、ターナーがイリノイ大学のMartin Whiteと共著でPhysical Review Lettersの論文において、初めて新語として引用符にくくり明示的にこの言葉を使用したと指摘している[1]
- ^ Ostriker, J. P.; Steinhardt, Paul J. (19 Oct 1995). “The observational case for a low-density Universe with a non-zero cosmological constant”. Nature 377 (6550): 600–602. Bibcode 1995Natur.377..600O. doi:10.1038/377600a0.
- ^ a b S. Perlmutter et al. (The Supernova Cosmology Project) (1999). “Measurements of Omega and Lambda from 42 high redshift supernovae”. Astrophysical J. 517: 565–86. arXiv:astro-ph/9812133. doi:10.1086/307221.
- ^ a b Adam G. Riess et al. (Supernova Search Team) (1998). “Observational evidence from supernovae for an accelerating universe and a cosmological constant”. Astronomical J. 116: 1009–38. arXiv:astro-ph/9805201. doi:10.1086/300499.
- ^ Suzuki, N.; Rubin, D.; Lidman, C.; Aldering, G.; Amanullah, R.; Barbary, K.; Barrientos, L. F.; Botyanszki, J. et al. (2012). = 1/a = 85 “The Hubble Space Telescope Cluster Supernova Survey. V. Improving the Dark-energy Constraints above z > 1 and Building an Early-type-hosted Supernova Sample”. The Astrophysical Journal 746 (1): 85–85. arXiv:1105.3470.
- ^ “The Nobel Prize in Physics 2011” (en). Nobelprize.org. 2016年7月31日閲覧。
- ^ 島田セレーナ (2011年10月5日). “ノーベル物理学賞、宇宙の膨張加速を突き止めた3教授に”. International Business Times 2016年7月31日閲覧。
- ^ Suzuki, N.; Rubin, D.; Lidman, C.; Aldering, G.; Amanullah, R.; Barbary, K.; Barrientos, L. F.; Botyanszki, J. et al. (2012). “The Hubble Space Telescope Cluster Supernova Survey. V. Improving the Dark-energy Constraints above z > 1 and Building an Early-type-hosted Supernova Sample”. The Astrophysical Journal 746 (1): 85–85. arXiv:1105.3470.
- ^ Percival, Will J.; Reid, Beth A.; Eisenstein, Daniel J.; Bahcall, Neta A.; Budavari, Tamas; Frieman, Joshua A.; Fukugita, Masataka; Gunn, James E. et al. (2010). “Baryon acoustic oscillations in the Sloan Digital Sky Survey Data Release 7 galaxy sample”. Monthly Notices of the Royal Astronomical Society 401 (4): 2148–2168. arXiv:0907.1660. doi:10.1111/j.1365-2966.2009.15812.x.
外部リンク
- Supernova Cosmology Project
- “ダークエネルギーの証拠”. News@KEK. 高エネルギー加速器研究機構 (2005年7月21日). 2015年9月16日閲覧。
- HubbleSite のプレスリリース: ダークエネルギーの正体に新たな手がかり
- 宇宙の年齢. 宇宙のエネルギーの組成についても。
- (百科事典)「Dark Energy」 - スカラーペディアにある「ダークエネルギー」についての項目。(英語)
- 宇宙を満たす暗黒エネルギーの存在にさらなる証拠- 23,000個のクエーサーを対象にした過去最大の重力レンズ探索で検証 - 2007/9/26 独立行政法人 理化学研究所
カテゴリ: