ABC予想 数学上の未解決問題 Ⅰ【初】冒頭
コンピューティングによる成果
2006年、オランダのライデン大学数学研究所は、さらなる abc-triple を発見しようと、Kennislink科学協会と共に分散コンピューティングシステムのABC@Homeプロジェクトを立ち上げた。たとえ発見された例または反例が abc予想を解決することができなくとも、このプロジェクトによって発見される組み合わせが、予想と整数論についての洞察に繋がることが期待されている。
q は上記で定義した abc-triple (a, b, c) の質 q(a, b, c) である。このとき、c の上限によって、質 q は以下のような分布を取る。
[隠す] | q > 1 | q > 1.05 | q > 1.1 | q > 1.2 | q > 1.3 | q > 1.4 |
---|---|---|---|---|---|---|
c < 102 | 6 | 4 | 4 | 2 | 0 | 0 |
c < 103 | 31 | 17 | 14 | 8 | 3 | 1 |
c < 104 | 120 | 74 | 50 | 22 | 8 | 3 |
c < 105 | 418 | 240 | 152 | 51 | 13 | 6 |
c < 106 | 1,268 | 667 | 379 | 102 | 29 | 11 |
c < 107 | 3,499 | 1,669 | 856 | 210 | 60 | 17 |
c < 108 | 8,987 | 3,869 | 1,801 | 384 | 98 | 25 |
c < 109 | 22,316 | 8,742 | 3,693 | 706 | 144 | 34 |
c < 1010 | 51,677 | 18,233 | 7,035 | 1,159 | 218 | 51 |
c < 1011 | 116,978 | 37,612 | 13,266 | 1,947 | 327 | 64 |
c < 1012 | 252,856 | 73,714 | 23,773 | 3,028 | 455 | 74 |
c < 1013 | 528,275 | 139,762 | 41,438 | 4,519 | 599 | 84 |
c < 1014 | 1,075,319 | 258,168 | 70,047 | 6,665 | 769 | 98 |
c < 1015 | 2,131,671 | 463,446 | 115,041 | 9,497 | 998 | 112 |
c < 1016 | 4,119,410 | 812,499 | 184,727 | 13,118 | 1,232 | 126 |
c < 1017 | 7,801,334 | 1,396,909 | 290,965 | 17,890 | 1,530 | 143 |
c < 1018 | 14,482,059 | 2,352,105 | 449,194 | 24,013 | 1,843 | 160 |
2012年9現在、ABC@Homeは2,310万個の3つ組を発見しており、当面の目標を 1020 を超えない c についての全ての abc-triple (a, b, c) を見つけることとしている[6]。
前回分復習再確認
定式化
自然数 n に対して、n の互いに異なる素因数の積を n の根基 (radical) と呼び、rad n と書く。以下に例を挙げる。
- p が素数ならば、rad(p) = p
- rad(8) = rad(23) = 2
- rad(45) = rad(32·5) = 3·5 = 15
自然数の組 (a, b, c) で、a + b = c, a < b で、a と b は互いに素であるものを abc-triple と呼ぶ。大抵の場合は c < rad (abc) が成り立つが、abc予想が主張するのはこれが成り立たない例外(例えば、a = 1, b = 8, c = 9, rad(abc) = 6 など)の方である。すなわち、任意の ε > 0 に対して、次を満たすような自然数の組 (a, b, c) は高々有限個しか存在しないであろうと述べている。
- {\displaystyle c>\operatorname {rad} (abc)^{1+\varepsilon }.}
これと同値な他の定式化(Oesterlé, Masser の abc予想)として次のものがある。すなわち、任意の ε > 0 に対してある K (ε) > 0 が存在し、全ての abc-triple (a, b, c) について次が成り立つという。
- {\displaystyle c<K(\varepsilon )\cdot \operatorname {rad} (abc)^{1+\varepsilon }}
- (K(ε) を ε に依らずに取ることはできない。)
三つ目の定式化は「質」(quality) と呼ばれる概念を導入して表現する。 abc-triple (a, b, c) に対して、質 q (a, b, c) を次のように定義する。
- {\displaystyle q(a,b,c)={\frac {\log c}{\log(\operatorname {rad} (abc))}}}
abc予想は、任意の ε > 0 に対して、 q (a, b, c) > 1 + ε を満たす abc-triple (a, b, c) は、高々有限個しか存在しないということを主張している。
現在、q(a, b, c) > 1.6 を満たす abc-triple は後述の通り3組しか知られていない。q(a, b, c) を 2 まで大きくすれば、そうした abc-triple は存在しないという予想もある。すなわち「全ての abc-triple (a, b, c) に対して、c < rad(abc)2 を満たすであろう」という主張だが、こちらも肯定も否定もされていない。
得られる結果の例