みなさんもご存じだと思いますが、東京大学は推薦入試を導入することを発表しました。
一芸に優秀な人材を獲得するのが狙いだそうです。
東大が求める人材として挙げたのは、特定の学問領域でずば抜けた力を持つ生徒。
これは他の大学にも影響を及ぼすかもしれませんね。
http://www.asahi.com/national/update/0315/TKY201303150346.html
ですが、導入は2016年。
まずは入試勉強を全力で取り組みましょう。
では、例題の解説&今回の問題
-------------------------------------------------------------------
問 不等式l2x+1l≦3の解は□□≦x≦□である
(2012年 センター試験数学Ⅰ・A)
-3≦2x+1≦3⇒-2x+1
問 関数y=2cos3xの周期のうち正で最小のものは□□□°である。
0°≦x≦360°のとき、関数y=2cos3xにおいて、y=2となるxは□個、y=-2 となるxは□個ある。
(1999年 センター試験数学Ⅱ・B)
関数y=2cos3xの周期のうち正で最小のものは120°
0°≦x≦360°のとき、関数y=2cos3xにおいて、y=2となるxは4個
y=-2となるxは3個ある。
グラフを描けばわかりやすいです。
ポイントはあまり細かく描く必要はないです。
必要最低限さえ抑えればOKです。
-------------------------------------------------------------------
問 △ABCにおいて、AB=2、BC=√5+1、CA=2√2とする。また、△ABCの外接円の中心をOとす る。
このとき、∠ABC=□□°であり、外接円Oの半径は□/□√□である。
(2007年センター試験数学Ⅰ・A)
問 aを定数とし、放物線y=x2+2ax-a3-2a2をC、頂点をPとする。
その頂点の座標は(□□、-a□-□a2)である。したがって、どのようなaの定数に
ついても頂点Pはy=x□-□X2のグラフ上にある。
(2005年センター試験数学Ⅱ・B)
-------------------------------------------------------------------