たけしのコマ大数学科#226
(旧名称・たけしのコマネチ大学数学科)
フジテレビ 2011年6月20日 深夜OA
今回のテーマは、
「楕円 Part2」
(7月20日発売)
たけしのコマ大数学科 第11期 DVD-BOX

¥7,140 Amazon.co.jp

◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇
楕円とかけまして、落語家さんと解きます。その心は…。
焦点(笑点)が大事でしょう~。
(戸部アナ)
ランキング参加してます。
読んだ人は、→ [ここをクリック]
1回押してくれることで、他の方にも読んでいただける機会が増えて嬉しいです。
◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇
今回の東大生は、
花の東大シスターズ:木村美紀さん(大学院4年生)、山田茜さん(経済学部4年)。
本日は父の日ということで、東大生のお父さんのお話。
なんと、山田さんのお父さんの名前は、
『山田一郎』さん!!
銀行の振込用紙の記入例みたいな名前ですが…。
でも絶対忘れない名前ですよね。得してる。
マス北野は、父にも、父としても、
父の日に何かあげたり、もらったりしたことはないそうです。
ホールケーキを菊次郎さんが地下足袋で踏みつぶして、
ケーキを刺してる金具が足に刺さってのた打ち回ったって話は笑った。
コマ大:
ダンカン 〆さばアタル 無法松 ガンビーノ小林
(今回はネタ見せナシ)
問題:

長軸の長さが10の楕円の2つの焦点を中心として、半径2の円を描きます。
楕円上に点P、2つの円上に点Q、点Rをとるとき
PQ+PRの最大値を求めなさい。
(※問題の図の縮尺は適当です)
楕円の問題は、以前にマッハ伊藤さんに
(秒殺シスターズの東大医学部コンビより、はるかに手ごわい先輩)に
マッハ解答されてしまった。
しかも
「(タカさん) どうですぁ?久々に参加してみて」
「(伊藤さん) 簡単でした」
と言われてしまった!!
「#214 楕円」 2011年3月7日OA 記事リンク
今回は 先生からのリベンジ問題だったのだが…。
コマ大数学研究会の挑戦:
今回は、広い公園を使ってロケ。
楕円と言えば、ラグビーボールということで、助っ人に呼んだのは
ラグビーを6年間やって全国大会にも出ているラガーマンの 柳宏明さん!
じつは、補欠だったようで・・・。
(※検索すると、財団法人日本ラグビーフットボール協会 の
インターン生とありました。→タグラグビー指導者講習会レポート)
番組のディレクターさんが友人の柳さんをキャステキングしたようです。
ためしにコマ大生が柳さんのタックルを受けてましたが、補欠でもすごいパワーです。
ということで検証方法は
地面に描かれた問題の楕円+円を使って、楕円上にいるコマ大生(点P)から、
ゴムにつながれた柳さんがトライした位置(円周上の点P,点Q)までの距離を計測。
いろいろな場所にトライして、その距離の最大値を求めてゆく。
ゴムが引っ張られるので、期待した通り、柳さんからコマ大生にゴムが飛ぶ!(笑)
でも途中で、柳さんにもゴムが飛んでしまい~
「僕、素人なのに…。」と脇腹に手を当てて痛みに苦しんでいました。(御気の毒)
様々なパターンを試して、答えが出ました。
タカさんの決め文句
「Let's 楕円 Part2!」
(ポーズは ラブビー。走りこんでからの戸部アナへパス、で、表現~)
対戦開始!
楕円の性質を理解していれば優しい問題という先生。
東大生は、点Pの位置をどこにするか考え始め…。
マス北野チームは、ポヌさんがマス北野にアドバイスを与えて…。
どうやらポヌさんが完全に理解していて、ほぼ秒殺でポヌさんが答えを書いた。
遅れること、東大生も「これでいいのか?」と思いつつも答えを書いた。
<東大生プチ情報>
今回は『恋のお悩み相談』。
山田さん:
好きな人は現在皆無だけど、好きな人ができたときに
どうやって自分に振り向かせるのか教えてほしい。
戸部アナは、追っちゃうタイプなので参考にはならないが…。
「さりげなく、アタック」だそうだ。
マス北野からは「夜中に相手の家にピンポンする」。
結局、いいアドバイスは無しかい~~
TIME UP!!
◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇
解答:
コマ大チームの解答:
答え、14.20
(解説:)
焦点どうしの真ん中あたりの楕円周上(ちょっとずれたあたり)から
小さい円の中心付近を通った向こう側の円周上にP,Q。
ちょうど真ん中じゃないわけを「人間のやってることですから」というダンカン部長。(笑)
マス北野チームの解答:
答え、14
(解説:)

楕円の焦点、F1、F2とすると
楕円の性質から、点Pがどこにあっても
F1P+F2P=10になる。
そこで、点Rと点Qがどこにあれば、最大値を取るのか考えると
PR、PQともに、焦点を通るときが一番長くなるので、
F1P+F2P + 円の半径2つ分 = 14 が最大値。
とてもシンプルに解きました。
東大生チームの解答:
答え、14
(解説:)
点Pを固定して、点Rを動かしたときに、
PRが最大になるのは、PRが焦点を通るときだとわかった。
同様に、点Qも、PQが焦点を通るときに最大。
あとは、ポヌさんと同様に、楕円の性質から
焦点1⇒点P⇒焦点2の距離は10で一定。
それに、円の半径2を、2つ分足した、14が答え。
山田さんからは、F1P+F2P=10の証明もありました。
(※点Pが直線F1F2の延長上
(楕円の長軸上)にあるときで証明できる)
正解は:
14
ということで、
マス北野と東大生が正解!
なんでコマ大は14.20なのか・・。
読んだ人は、→[ここをクリック]
◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇
美しき数学の時間 (先生の解説)
考え方:
先生は、説明することがない、と少々意気消沈でしたが…。

P:楕円上の点
長軸:CD=10
焦点をABとするとき、PA+PB=一定 (楕円の性質・・というか、楕円の定義)
Q:Aを中心とする半径2の円周上の点
R:Bを中心とする半径2の円周上の点
では、PQ+PRが最大になるのはいつか?
1:Pをとめたとき、最大値はPA+PB+2x2 (2は円の半径)
なぜならば
円外の1点Pと、周上の点Qの距離は
PQが円の中心をとおるときに最大だから
(ユークリッドの『原論』第3巻第8節)
2:Pが動いても最大値=PA+PB+4で一定
PA+PB= いくつ?
PがCのとき:PA+PB=2CA+AB
PがDのとき:PA+PB=2DB+AB
ということで CA=DB
なので、PA+PB=2CA+AB=CA+AB+BD=CD=10 (=長軸の長さ)
したがって、最大値=PA+PB+4=10+4=14
ユークリッド原論 縮刷版/中村 幸四郎

¥5,985 Amazon.co.jp
ちなみに、問題を寸法通り描くと、こんな感じ

(※短軸を長めにしないと、円が楕円からはみ出る。)
発展解説
・スーパー楕円 (super ellipse)
楕円の式は、
(x/a)2+(y/b)2=1
これを、乗数2じゃなくて、違う数にしてみようと
(x/a)r+(y/b)r=1 (rは1,2,3…でなくても良い)
にしたもののグラフを 『スーパー楕円』というそうだ。
(ヨーロッパでは、フランスのラメという人が研究したので「ラメ曲線」と呼ばれている)
r=2.5は、デンマークのデザイナーである、
ピート・ハイン (Piet Hein 1905-1996)が
日用品や建築のデザインに使ったそうで、それが紹介されてました。
r=2.5だと、r=2の楕円より、ちょっと膨らんだ感じ。

(※長軸10 短軸8.4 紺色:楕円 水色:スーパー楕円
x = a*(cosΘ)^0.8 y=b*(sinΘ)^0.8 で描かせた)
デザイナーズテーブル【スーパー楕円テーブル/Super Circular Table/天板白/...
¥50,400 楽天
Piet Hein キャンドルホルダー2個セット 《 ピートハイン ピート・ハインが生み出した...
¥1,890 楽天
例として、1968年メキシコ五輪に使われた、アステカ競技場も出てきましたね。

ちなみに、数学で「超楕円」は、hyper ellipseと言って、別物らしいです。
※参考サイト:スーパー楕円|くろべえ
読んだ人は、→[ここをクリック]
◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇
コマ大フィールズ賞:
今回は、早く答えを出した
マス北野チームに!
エンディングテーマが新しくなりました。
【エンディング曲・音座芸夢 収録アルバム】

快進のICHIGEKI/快進のICHIGEKI
¥2,100 Amazon.co.jp
◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇
★あとがき
次回は「あの国立大学に必勝態勢で挑戦!?」。
簡単に解かれてしまった中村先生ですが…。
「いや、難しい問題ならいくらでもあるんでね」と悔しさをのぞかせてました。
追記:
今週も、最後の1フレームに、1枚の画像が差し込まれてた!
コマ大の検証風景だったけど~
これから、ちょこちょこ、こういう遊びを入れるのかしら~
ランキング参加してます。
読んだ人は、→[ここをクリック]
1回押してくれることで、他の方にも読んでいただける機会が増えて嬉しいです。

◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇
講師:中村亨
(1963年生まれ。東京大学大学院理学系研究科数学専攻修了、理学修士。)
著書:数学21世紀の7大難問 中村 亨 など
学研の参考書・辞典【コラム】中村あきら先生のマスマス数学
解答者:
マス北野
ポヌさん (ベナン出身・東大大学院生・マス北野の助っ人・ゾマホンの友人)
東大・花の東大シスターズ:木村美紀(大学院4年生)、山田茜(経済学部4年)
木村美紀 AMUSE所属 Blog「木村美紀の七変化」
コマネチ大学生:
ダンカン 〆さばアタル 無法松 ガンビーノ小林
2011/6/20 深夜OA
コマネチ大学の前回までの記事
http://ameblo.jp/chablis/theme-10002941350.html
ガスコン研究所 ■コマネチ大学2006年度講義リスト(#1~42・マス1グランプリ含)
◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇
ECC×ケイコとマナブ.net
無料体験レッスン予約はこちら
◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇
![]() | ![]() | ![]() | |
![]() | ![]() | ![]() | ![]() |
![]() | ![]() | ![]() | ![]() |
◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇
ガロアの群論![]() | 数学21世紀の7大難問![]() | フェルマーの最終定理![]() | *** |
インド式計算ドリル![]() | インド式計算ドリル![]() | インド式計算ドリル練習帳![]() | 無限ホテル![]() |
◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇

















