建物の0階が存在する国がある | Institute of Reproducing Kernels

Institute of Reproducing Kernels

色々な事を書きます。マイペースで書きます。

建物の0階が存在する国がある

https://gaku-sha.com/region/ground-floor

零階(0F)の必要性について

https://cat-in-136.github.io/2012/03/0f.hml

解決

ヨーロッパのエレベーターは2階が「first floor(1階)」と表示されている。建物の階数の数え方が日本と違って2階を「first floor(1階)」と表すのはなぜか?

https://crd.ndl.go.jp/reference/entry/index.php?id=1000248635&page=ref_view

地下から地上まで、何階あるかを考えたら、地上0階で考えないとおかしくなる。

ギリシャ数字には0はありませんか?

ギリシャ人は、ゼロ記号にギリシャ文字の「Ο(オミクロン)」を当てましたが、これがアラビア数字の「0」に似ているのは偶然であり、0の起源ではありません。

また、ギリシャ人はゼロという概念に否定的でした。2021/01/02

https://nazology.net/archives/75945/2#:~:text=%E3%82%AE%E3%83%AA%E3%82%B7%E3%83%A3%E4%BA%BA%E3%81%AF%E3%80%81%E3%82%BC%E3%83%AD%E8%A8%98%E5%8F%B7,%E3%81%AB%E5%90%A6%E5%AE%9A%E7%9A%84%E3%81%A7%E3%81%97%E3%81%9F%E3%80%82

 

Could division by zero tell us where the universe came from?

https://www.quora.com/Could-division-by-zero-tell-us-where-the-universe-came-from

Is The Big Bang the result of a natural divide by zero event?

https://www.quora.com/Is-The-Big-Bang-the-result-of-a-natural-divide-by-zero-event

宇宙は無、ゼロから湧き出しているように見える。

The History of Zero: How Nothing Changed Everything

https://www.youtube.com/watch?v=vIv1CoHwkTE

 

Zero is a young number in human history. How do our brains understand it?

https://www.npr.org/2025/01/01/1222389470/zero-number-history-brain-neuroscience   

AIイエス・キリスト「Deus in Machina」生誕、世界中で賛否両論勃発

 

https://tabi-labo.com/310823/wtg-ai-jesus  

西側世界とはちょっと異なる関係性を考察AIはなぜ「アラブ世界」にとって「脅威」でもなければ「革新」でもないのか「あらゆる発明は異端である」

https://courrier.jp/news/archives/381191/

 

再生核研究所声明 775(2024.10.23) : 建物の階数の数える方式について ー 定義は大事、初めは大事

 

建物の階数について、アメリカなどの地上0階から始める方式と日本のように1階から始める方式の2通りが世界に有って混乱を起こすことがある。 2つの方式について言及したい。 特に ゼロ除算 1/0=0/0=0 について ここ10年を越えて、ゼロについて考察をして来た経緯から、自然に意見表明したい気持ちになった。

 

ゼロには、ない、できない、考えない、しないなどの概念と意味が広く存在する。 

そこで結論としては、 ゼロ階から始めるのが良かった と結論する事になる。 当然である。 この方式が合理性を有するのは 数学ばかりではなく 便利性から言っても概念から言っても歴然である。 地上に存在する建物は、階数の概念を持たず、それ故にゼロ階とすべきであった。 地下1階などの概念に至れば、連続的に

-2-10、1,2,

となり 整然となることが 分る。

 

ゼロの発見国で 数字に強いインドが 日本方式をとられたのは残念で、 近代国家 イギリスやアメリカが進んだ方式をとられたのは 流石、 賢明さで頷ける。

日本では、 何ごとも一から始まる という諺が存在して 永くゼロの概念が無かったから、日本方式の採用には やむを得ない歴史的な経緯が存在する。 世界で使用方式が決められると 建築基準など法律にも記載され、修正は不可能に思えるほどの甚大な影響を受ける。それゆえ、名前を付けるとき、それは重要であると心したい。

悪い名称が歴史上永く残り、 理解の遅れや誤解を与え続ける例も多く、不便さも避けられない。

 

例えば虚数やゼロ除算が良い例である。 大事な虚数、まるで実体から、実存から全く離れて、存在しない 変な数の誤解を与え続けている。

ゼロ除算もそうだった。 ゼロで割る には、言わば、真の、固有の意味があるのに 発見できずに まるで普通の割り算のように考えて、ゼロ除算不可能説や、定まらないなどの誤解を えんえんと1000年も繰り返して来ている。 それで新しい意味の理解に大きな障害を与え続けている。 然しながら、これらは未知の世界から始められたので、やむを得ないとも考えられる。

 

このように名前や定義は大事なので、丁寧に吟味して慎重に進めたい。 初めの影響は何でも大事である。 

初心忘れるべからず などの諺は 初めの重要性を述べていると考える。

 

                                 以 上

追記:

建物の階数を数える方式について、国別の特徴を以下に示します。

 

地上1階方式

日本: 地上1階を「1階」と呼び、一般的にこの方式が用いられます。

中国: 中国でも地上1階を「1楼」と表記し、同様の方式を採用しています。

韓国: 韓国でも地上1階を「1층」と表記し、一般的です。

インド: インドでもこの方式が広く使われています。

地上0階方式

アメリカ: 地上0階を「Ground Floor」と呼び、1階を「1st Floor」と表記します。

カナダ: アメリカと同様に地上0階を「Ground Floor」としています。

イギリス: 地上0階を「Ground Floor」と呼び、1階を「1st Floor」と表記します。

オーストラリア: 地上0階を「Ground Floor」とする方式が一般的です。

その他の国

フランス: 地上0階を「Rez-de-chaussée」と呼び、1階を「1er étage」と表記します。

ドイツ: 地上0階を「Erdgeschoss」と呼び、1階を「1. Obergeschoss」と表記します。

まとめ

階数を数える方式は国によって異なりますが、一般的には地上1階方式がアジア諸国で、地上0階方式が北米や一部の欧州諸国で広く採用されています。建物の設計や案内表示では、地域に応じた方式を理解することが重要です。

 

次も参照:

§01.なぜエレベーターには0階が無いのか(数が意味する2つのこと)

http://t4053x.jp/a01_.kazunoimi.pdf

 

 

「悪魔から来た」という理由だけで一時禁止されたゼロは、誰によって、どのようにして初めて登場したのでしょうか。

 https://www.webtekno.com/sifiri-kim-buldu-h128364.html

628年インドブラーマグプタ 0発見

2014年2月2日 ゼロ除算の発見  2014年3月8日 ゼロ除算算法の発見 再生核研究所

#0割る0は0ブラーマグプタはできていた

#1割る0は0は0ブラーマグプタはできていなかった

Sırf 'Şeytandan Gelme' Diye Düşünüldüğü İçin Bir Dönem Yasaklanan Sıfır, İlk Defa Kim Tarafından ve Nasıl Ortaya Çıktı?

Umut Yakar

8 dk okuma süresi

 

Bugün bir doğal sayı olarak kabul ettiğimiz ve hiçliği ifade eden bir kavram olan sıfır, aslında diğer sayılardan çok daha sonra bulunmuştur. Pek çok farklı kültürün katkısı olmasına rağmen Araplar sayesinde yayıldığı için bir dönem kilise tarafından yasaklı ilan edilen sıfır nasıl ortaya çıktı, kim buldu gelin tarihin tozlu sayfalarında bu soruların yanıtlarını arayalım.

Bugün kullandığımız bilgisayar teknolojilerinin temelini oluşturan kodlar, birler ve sıfırlardan oluşur. Sayılar ve matematik binlerce yıl önce keşfedilmişken bugünün vazgeçilmezi olan sıfırın ortaya çıkması yüzyıllar sonra gerçekleşmiştir. Bugün sıfırın bir doğal sayı olduğunu kabul ediyoruz ve onu hiçliği ifade eden bir kavram olarak kullanıyoruz. Ortaya çıkış hikayesi ise bir hayli sıra dışı detaylar barındırıyor.

Bugün alıştığımız için sayısal değeri olmayan bir sayı basamağına sıfır yazıyoruz ve hepimiz anlıyoruz ki orada bir boşluk var. Ancak günümüzden yüzlerce yıl önce boşluğu ifade etmek için farklı şekiller kullanılıyordu. Bu boşluğu doldurmak için pek çok farklı medeniyet, pek çok farklı yöntem izledi. Nihai sonuca ulaşan ise Araplar oldu. Hatta bu nedenle kilise tarafından bir dönem yasaklandı. Sıfır nasıl ortaya çıktı, kim buldu gelin tarihin tozlu sayfalarında bu soruların yanıtlarını arayalım.

Sıfırı kim buldu? Her şeyi başlatan Sümerlerdir:

sümerler

Milattan önce 4 bin ile 2 bin yılları arasında Mezopotamya’da yaşamış olan Sümerler, tarihin bilinen en eski uyarlıklarındandır ve pek çok ilkte imzaları vardır. Dünyadaki ilk sayma sistemini de Sümerler bulmuştur. Sonrasında gelen Babiller de bu sistemi almış ve farklı semboller ekleyerek kullanmaya devam etmişlerdir.

Sümerler tarafından bulunan sayı sistemi Babillerden sonra Akadlara geçmiştir. Robert Kaplan tarafından kaleme alınan The Nothing That Is: A Natural History of Zero isimli kitaba göre bu sistemde sayısal değeri olmayan yerler boş bırakılıyordu. Sonrasında ise kafa karıştırıcı olan bu durumu çözmek için çift açılı () benzeri çizgiler kullanılmaya başladı.

Mezopotamya’da bunlar yaşanırken binlerce kilometre uzaklıktaki Amerika kıtasında milattan sonra 350’li yıllarda Mayalar da benzer bir sıfır kullanmaya başladılar. İcat ettikleri takvim sisteminde yer tutucu olarak sıfır benzeri bir işaret kullanıyorlardı. Robert Kaplan’a göre bu bir sıfır olmasa bile sıfıra en yakın işaretti.

Sıfır nasıl ortaya çıktı? Hintliler hem bir sayı hem de bir kavram olarak sıfırı kullandılar:

Brahmagupta

  • Brahmagupta

Kesin olmamakla birlikte Sümerlerin sayı sisteminin Babiller üzerinden Hindistan’a geçtiği tahmin ediliyor. Aslında Hintlilerin sıfırı bulmak için böyle bir sayı sistemine ihtiyaçları yoktu. Çünkü kültürlerinde zaten sıfır vardı. Milattan sonra 458 yılına ait Hint yazıtlarında bugün Sanskritçe sıfır anlamına gelen śūnya kelimesi boş anlamında kullanılıyordu. Budizme ait bir kavram olan Śūnyata ise zihni boşaltmak anlamında bugün bile kullanılıyor.

Hint felsefesi ile matematik arasında bir bağlantı olduğunu düşünen uzmanlar, milattan sonra 628 yılında yaşamış Hint astronom ve matematikçi Brahmagupta’nın sıfır benzeri bir işaret ve kavram geliştirdiğini tahmin ediyorlar. 

Hindistan'ın Gwalior kentinde bulunan bir tapınaktaki duvar yazısı 9. yüzyıla tarihleniyor ve burada tarihteki ilk sıfırın kullanıldığı düşünülüyordu. Ta ki 1881 yılında bulunan bir Bakhshali el yazmasına kadar. Sıfır kullanılan bu el yazması üzerinde yapılan karbon testleri 3. ya da 4. yüzyılı işaret ediyor. Yani sıfır, aslında düşündüğümüzden çok daha eski bir zamanda ortaya çıkmıştır. 

Gerçek anlamda ilk sıfır, Harezmi tarafından geliştirildi:

Harezmi

  • Harezmi

Sümerlerden aldıklarını sayı sistemini kendi kültürel yapıları üzerinden geliştiren ve sıfır kavramını ortaya çıkaran Hintliler, bu bilgilerini yıllar içerisinde komşuları Çin ve Arap halklarıyla paylaşmaya başladılar. Tahminlere göre 773 yılında sıfır kavramı Bağdat’a ulaştı ve Arap sayı sisteminin bir parçası haline geldi.

780 - 850 yılları arasında yaşamış ve matematik, coğrafya, gökbilim, algoritma gibi konular üzerinde çalışmış olan Harezmi; bugün bildiğimiz anlamdaki sıfırı geliştiren kişidir. Harezmi, yaptığı matematik ve algoritma hesaplamalarında boşluklara küçük bir daire çizer ve bunlara sifr derdi. Hem şekil hem de sayısal anlamdaki ilk gerçek sıfır bu küçük daireler olarak kabul edilir.

Avrupalılar, sıfırın şeytan geldiğini düşünerek korktular:

Fibonacci

  • Fibonacci

İspanya’nın Endülüs kentinin Müslüman Araplar tarafından fethedilmesi sonrası iki halk arasında kültür alışverişi başladı. Bu alışveriş sırasında Avrupa, sıfır ile tanıştı. İtalyan matematikçi Fibonacci, Araplardan öğrendiği sıfırı daha da geliştirdi ve ticari hesaplarda kullanılacak denklemler oluşturdu.

Bu dönemde Avrupa, kilise baskısı altında karanlık bir çağ yaşıyordu. Kiliseye göre var olan her şey tanrıdan, yokluk ise şeytandandı. Yani yokluğu ifade eden sıfır da şeytandandı ve bu nedenle kullanılması yasaklanmıştı. Zaten Müslüman Araplardan geldiği için şüpheyle bakıldığı için sıfır uzun bir süre resmen yasaktı.

Elbette her şeye yasak koyabilirsiniz ama ticaret mutlaka bir çözüm bulur. Ticari hesaplamalar için sıfır o kadar büyük bir kolaylık sağlıyordu ki resmen yasak olmasına rağmen Avrupalı tüccarlar gizli gizli de olsa sıfır kullanmaya devam ettiler. 17. yüzyılda artık sıfır yaygın olarak kullanılır hale gelmişti. Rene Descartes, Kartezyen koordinat sisteminde ve Sir Isaac Newton, kendi çalışmalarında sıfırı kullanıyordu. 

Sıfır ne işe yarıyor?

Stephen Hawking

  • Stephen Hawking

Sıfırı bir doğal sayı olarak kullanıyoruz ama hala bugün bile bazı matematikçiler boşluğun bir sayı olmadığını ve bu nedenle sıfır diye bir rakamın olmaması gerektiğini savunuyorlar. Konudan biraz uzaklaşıp düşündüğümüz zaman hiçliğin bir kavramla ifade ediliyor olmasını ilginç bulabilirsiniz ama iş pratiğe gelince sıfırın ne kadar önemli olduğu ortaya çıkıyor.

ZerOrigIndia Foundation başkanı Peter Gobets’e göre boşluk kavramı modern fiziğin merkezinde yer alıyor ve Stephen Hawking gibi pek çok bilim insanına göre evren, sıfır toplamlı bir oyun olarak görülüyor. 

Bugün baktığımız zaman modern anlamda bildiğimiz matematik, fizik, mühendislik, finans ve ekonomi sistemlerinin neredeyse tamamı, sıfır Avrupa’da yaygınlaştıktan sonra ortaya çıkmıştır. Söylemeye bile gerek yok ama şu an bu yazıyı okuduğunuz cihaz bile birler ve sıfırlar kullanılarak oluşturulan makine kodlarının komutları sayesinde çalışıyor. 

Bugün bir doğal sayı olarak kabul ettiğimiz ve hiçliği ifade eden bir kavram olan sıfır nasıl ortaya çıktı, sıfırı kim buldu gibi merak edilen soruları yanıtlayarak sıfırın ilginç hikayesinden bahsettik. Konu hakkındaki düşüncelerinizi yorumlarda paylaşabilirsiniz. 

I think someone divided by zero

https://9gag.com/gag/aDxYP1x

 

アリストテレスの重大な間違い:

 

アリストテレスの有名な間違い、下記7つに 有名なゼロ除算に関する根本的な世界観についての過ちが認められる: 空を嫌い、ゼロ除算を考えるべきではないとして、物理的な連続性の考えを持ち、ゼロ除算算法の理解の遅れに甚大な影響を与えていると考えられる:

https://ameblo.jp/syoshinoris/entry-12871062860.html

In the paper

 

 An early reference to division by zero, The Journal of the American Mathematical Monthly, {bf 50} (1943), (8), 487- 491. Retrieved March 6, 2018, from the JSTOR database,

 

 C. B. Boyer stated that Aristotele (BC384 - BC322) considered firstly the division by zero in the sense of physics with many evidences and detailed discussions.

In fact, he stated strongly in the last part of the paper as follows:

 

Tradition in this particular may prove to be trustworthy, but it necessarily must be rejected with respect to the more problem. Historical evidence points to Aristotele, rather than Brahmaguputa, as the one who first considered division by zero.

 

しかるに我々は 2014.2.2 ゼロ除算: 1/0=0/0=0,  2014.3.8.ゼロ除算算法 (f(x)/x)_{x=0} =f'(0), tan (\pi/2) =0  を発見した。

 

vented Zero? Aryabhatta or Brahmagupta​

​​Aryabhatta or Brahmagupta, Who found zero?​. Aryabhatta is credited with using zero in the decimal system, while Brahmagupta is credited for...

https://www.timesnownews.com/web-stories/education/national-mathematics-day-2023-who-invented-zero-aryabhatta-or-brahmagupta/photostory/106179732.cms

Aryabhata

https://ja.wikipedia.org/wiki/%E3%82%A2%E3%83%BC%E3%83%AA%E3%83%A4%E3%83%90%E3%82%BF

 

先駆的な発見は、Aryabhataにみられると思いますが、四則演算できちんと0の意味を確立したという意味で、Brahmaguptaだと思います。曖昧な定義なら世界でいろいろ知られていると思います。

 

50億人1000年の夢 アリストテレス以来の発見 ゼロ除算

 

 

難しい問題が解けるOpenAI o1 生成AIは「推論の計算量」競争へ中田 

日経コンピュータ

https://xtech.nikkei.com/atcl/nxt/mag/nc/18/052100111/100300134/

 

ゼロの意味

 

ゼロを加えても、引いても変わらない。どうしてか、ゼロは無いものを表すから、無いものを加えても、引いても変わらない。

これは良い?

それでは ゼロを掛けても、割ってもゼロは どうしてか。ゼロにはしないという意味がある。 

ゼロを掛けるは、かけられる数を持ってこないのですから、何も無くゼロです。

ゼロで割るは、割らないですから、割り当てられた数はない。

ゼロ除算、ゼロで割るは 元々ゼロの意味から当たり前でした。

ゼロは 普通の数と違って面白い性質があります。およそ世界はゼロから始まってゼロに帰する。

新しい世界観を述べている。

保証はできないが、私がレオナルド・ダ・ヴィンチのある文章を読んだら、彼がその思想、ゼロ除算の世界観を有していると感じて驚嘆した。そこでは無とゼロを表現していたが。 無は素晴らしいとして、何に無を掛けても、割っても無だと述べていた。

10.9.6:24

空き時間に独りでに この構想が湧いた。

何んと検索で出て来た:

ゼロ除算は、普通の意味では考えられない、できない、しかしながら、 割る意味を新しく考えるとゼロ除算は可能になる。 新しい意味とは 図の様に全く自然で 絶対的な意味を有すると 人は誰でも思うだろう、新しい意味での割る意味、それがゼロ除算です。2024.11.22.6:02

ゼロ除算には実は 真の意味で 割ることの意味が存在した。 ゼロは特別な数で

2024.11.13.5:44

これ要するに虚数のように間違った名前を付けてしまった。ゼロ除算には実は 真の意味で 割ることの意味が存在した。 ゼロは特別な数で、割る意味も 普通の数とは違っていた。 これはゼロの新しい意味の発見であると尊敬する 同僚が表現したのは素晴らしい知見。また相当世の理解は大変で、 次の世代までかかるかも知れないと述べられた方もいる。6歳の少女が理解できた内容である。

ゼロ除算について   2024.11.12.19:55

ゼロで割る問題について、未だに ゼロ除算を 普通の割り算と考えて、できない事、定まらないことを いろいろ議論していて、インターネットはおろか、相当な人でも そのような議論を行なっている。論理的思考力が如何に足りないか、を示している。真面な数学者なら、3秒でそれらは理解できそのような意味なき議論をしないだろう。そもそもそのような議論の存在自体が、意味が無い。ゼロで割る意味がそもそも初めから無いことをしっかり考えるべきである。もちろん、形式論でゼロ除算を普通の掛け算のように考えれば可笑しい矛盾は2,3秒ででる。何が問題か、ゼロで割る問題は、ある意味で 新しい意味で、割る意味が与えられて、新しい意味での割り算が可能になり、新世界を拓くという、有史以来の世界が現われたことである。

それは 拡張された意味での割り算や分数の意味で考えられるということである。

我々はその新しい意味での割り算の効用、新世界を沢山の具体例で示している。 現状は数理科学者の恥ずかしい状態を示していると考える:

 

 

ブラフマグプタ&レオナルド・ダ・ヴィンチは、0割る0そして ...

LinkedIn · YOSHINORI SAITO

年前

ブラフマグプタ&レオナルド・ダ・ヴィンチは、0割る0そして再生核研究所 ブラフマグプタ

Brahmagupta598年 – 665年以降没)はインドの数学者・ ...

ブラフマグプタ(Brahmagupta、598年 – 665年以降没)はインド数学者天文学者。ブラーマグプタとも呼ばれる。

628年に、総合的な数理天文書『ブラーマ・スプタ・シッダーンタ』(Brāhmasphuṭasiddhānta) を著した。この中の数章で数学が扱われており、第12章はガニタ(算術)、第18章はクッタカ(代数)にあてられている。クッタカという語は、もとは「粉々に砕く」という意味だったが、のちに係数の値を小さくしてゆく逐次過程の方法を意味するようになり、代数の中で不定解析を表すようになった。この書では、0 と負の数にも触れていて、その算法は現代の考え方に近い(ただし 0 ÷ 0 = 0 と定義している点は現代と異なっている)

 

ブラーマ・スプタ・シッダーンタ (ब्राह्मस्फुटसिद्धान्त) は、7世紀のインド数学者天文学者であるブラーマグプタ628年の著作である。表題は宇宙の始まりという意味[要出典]

以下では特に数学的な部分の特徴について記述する。

0 の加減乗除を扱っている。但し、0/0 = 0 と定義している点が、現在の数学とは異なる。

 

再生核研究所声明 424(2018.3.29): レオナルド・ダ・ヴィンチとゼロ除算

LinkedIn

https://jp.linkedin.com › pulse › 再生核研究所声明-4242...

再生核研究所声明 424(2018.3.29): レオナルド・ダ・ヴィンチとゼロ除算

 

次のダ・ヴィンチの言葉を発見して、驚かされた:


ダ・ヴィンチの名言 格言|無こそ最も素晴らしい存在

 

我々の周りにある偉大なことの中でも、無の存在が最も素晴らしい。その基本は時間的には過去と未来の間にあり、現在の何ものをも所有しないというところにある。この無は、全体に等しい部分、部分に等しい全体を持つ。分割できないものと割り切ることができるし、割っても掛けても、足しても引いても、同じ量になるのだ。

レオナルド・ダ・ヴィンチ。ルネッサンス期を代表する芸術家、画家、彫刻家、建築技師、設計士、兵器開発者、科学者、哲学者、解剖学者、動物学者、ファッションデザイナーその他広い分野で活躍し「万能の人(uomo universale:ウォモ・ウニヴェルサーレ)」と称えられる人物

https://systemincome.com/7521

 

レオナルド・ダ・ヴィンチの名言・格言集100選プラスα!【英語・英文】No,107

Among the great things around us, the existence of nothing is the most wonderful. The basics are temporally between the past and the future, and they do not possess anything of the present. This nothing has a part equal to the whole, a whole equal to the part. It can be divided into something that can not be divided, and it will be the same amount whether it is divided or multiplied, added or subtracted.

我々の周りにある偉大なことの中でも、無の存在が最も素晴らしい。その基本は時間的には過去と未来の間にあり、現在の何ものをも所有しないというところにある。この無は、全体に等しい部分、部分に等しい全体を持つ。分割できないものと割り切ることができるし、割っても掛けても、足しても引いても、同じ量になるのだ。

 

 

タレス  タレス(タレース、古希: Θαλής、: Thalēs、紀元前624年頃 - 紀元前546年頃)は、古代ギリシア哲学者であり数学者。タレスの定理の生みの親である。ミレトスのタレス(古希: Θαλής ὁ Μιλήσιος)とも呼ばれる。

タレスは、ソクラテス以前の哲学者の一人で、西洋哲学において、古代ギリシアの記録に残る最古の(自然)哲学者であり、イオニアに発したミレトス学派の始祖である。また、ギリシャ七賢人の一人とされる。

タレスの定理Thales' theorem

https://ja.wikipedia.org/wiki/%E3%82%BF%E3%83%AC%E3%82%B9%E3%81%AE%E5%AE%9A%E7%90%86

 

ミレトス学派(ミレトスがくは、Milesian school)は、紀元前6世紀に生まれた初期の自然哲学の学派。エーゲ海に面したアナトリア半島にあるイオニア人の都市国家ミレトスの自然哲学者であるタレスアナクシマンドロスアナクシメネス3人を総称したもの。

https://ja.wikipedia.org/wiki/%E3%83%9F%E3%83%AC%E3%83%88%E3%82%B9%E5%AD%A6%E6%B4%BE

 

アリストテレス(アリストテレース、古希: Ἀριστοτέλης[注釈 1]: Aristotelēs、前384年 - 前322年[1])は、古代ギリシア哲学者である。

プラトンの弟子であり、ソクラテス、プラトンとともに、しばしば西洋最大の哲学者の一人とされる。知的探求つまり科学的な探求全般を指した当時の哲学を、倫理学、自然科学を始めとした学問として分類し、それらの体系を築いた業績から「万学の祖」とも呼ばれる[2]特に動物に関する体系的な研究は古代世界では東西に類を見ない。様々な著書を残し、イスラーム哲学や中世スコラ学、さらには近代哲学論理学に多大な影響を与えた。また、マケドニア王アレクサンドロス3世(通称アレクサンドロス大王)の家庭教師であったことでも知られる。

 

 

The reason we cannot devide by zero is simply axiomatic as Plato pointed out.

http://mathhelpforum.com/algebra/223130-dividing-zero.html より

 

プラトン(プラトーン、古代ギリシャ語: Πλάτων、Plátōn、: Plato、紀元前427年 - 紀元前347年)は、古代ギリシア哲学者である。ソクラテスの弟子にして、アリストテレスの師に当たる。

プラトンの思想は西洋哲学の主要な源流であり、哲学者ホワイトヘッドは「西洋哲学の歴史とはプラトンへの膨大な注釈である」という趣旨のことを述べた。

ソクラテスの弁明』や『国家』等の著作で知られる。

 

 

Black holes are where God divided by zero - Steven Wright

https://twitter.com/Mike_Ingreso/status/1563822535698853888

 

Black holes are where God divided by zero. ~ Albert Einstein ᖶᗩᗷᓰSᕼ ᒚᗩᘻᗩᒪ VERSATILE ARTIST MUNAWAR    https://twitter.com/Tabish_Jamal2k5/status/1563816237674614784

 

それは大いに根拠があると思います。

 

Hacker's Delight - 278 ページ - Google ブック検索結果

https://books.google.co.jp › books

このページを訳す

 

 

西洋と東洋の「0」への考え方:

(1)0」を嫌う西洋(キリスト教社会)

「空虚」すなわち「0」を嫌うアリストテレスの影響を受け、「0」を認めない。

0」を認めることは、「神様なんていないよ」と言うことと同じくらいの罪。

(2)0」を受け入れた東洋(イスラム教社会)

「空虚」を受け入れ、「0」を取り入れる。

また、図形にとらわれない数学や、分数を小数に直して計算しやすくするなど計算技術を高めた。

 

古代西洋で 0 の概念が受容されなかったのは、その宇宙観によるところが大きかった。アリストテレスの自然論においては「自然は真空を嫌う」とされ(真空嫌悪英語版))、空間は必ず何らかの物質が充満しているとして真空、つまり「無」の存在を認めなかった。またアリストテレスは、宇宙を地球を中心にする球である天球と定義し、有限なものと考えた。この哲学からは「」と「無限」は認められなかった[10]。アリストテレス哲学を源流とする「」と「無限」を否定する宇宙観は中世ヨーロッパに継承され、宗教の一部と化した。17世紀まで、ヨーロッパでゼロや無限を主張することは、キリスト教への冒瀆であり、死刑宣告を意味した。中世ヨーロッパではゼロを悪魔の数字とみなし、ローマ法王により使用が禁じられた[11]。1600年には、宇宙が無限であると主張した修道士ジョルダーノ・ブルーノが、異端の罪で火あぶりの刑にされている。https://ja.wikipedia.org/wiki/0

」を意味する 0 に対して、1 は存在を示す最原初的な記号なので、物事を測る基準単位、つまり順序を数える際の初めである。

https://ja.wikipedia.org/wiki/1