数学者(整数論) 志村五郎氏死去 (静岡県 浜松出身) (谷山志村予想とフェルマーの最終定理 300年来の超難問証明に貢献) 2019年 5月3日
▼数学者の藤原正彦さんは、大学院時代の指導教官から厳命されたそうだ。「フェルマーだけはやるな。数学人生終わりだよ」(『世にも美しい数学入門』ちくまプリマー新書)。
▼「(Xのn乗)+(Yのn乗)=(Zのn乗)でnが2より大きい自然数の解はない」。17世紀のフランスの法律家フェルマーは、「証明法をみつけた」とだけ本に書き残していた。この「フェルマーの最終定理」にどれほど多くの数学者が挑み、敗れ去ってきたことか。
▼360年後の1994年、米プリンストン大のアンドリュー・ワイルズ教授がようやく証明に成功する。そのカギとなったのが、「谷山・志村予想」と呼ばれる楕円(だえん)曲線に関する理論である。
▼谷山豊さんと志村五郎さんは、東大数学科で学術雑誌の貸し借りをきっかけに知り合った。谷山さんは31歳で謎の自殺を遂げる。当時プリンストン大に移っていた志村さんが、谷山さんの研究を引き継いだ。
▼藤原さんによれば、奇妙奇天烈で豪快だった谷山さんの理論を、志村さんが10年くらいかけて美しい姿に仕上げた。「谷山は正しい方向に間違えるという、特別な才能に恵まれていた」。親友を評する言葉は、なんとも味わい深い。フェルマーの定理の証明より、志村さんたちの予想の方が、数学への貢献は大きい、との見方さえあるそうだ。
▼志村さんは、中国の古典文学に関する研究書など、数学とは関係のない原稿も数多く残している。その一つが「丸山真男という人」と題したエッセーである。戦後の論壇に大きな影響力を持っていた政治学者に対して、歴史認識の誤りや教養の欠如を批判していた。今月3日、89歳で世を去った天才数学者の頭の中はどうなっていたのだろう。
/////
「350年の難問解決! フェルマーの最終定理」 1995年2月13日( 数学[整数論])
//////
やや専門的内容
/////
Number Theory and Automorphic Forms 整数論と保型形式
http://www.kurims.kyoto-u.ac.jp/~kyodo/kokyuroku/contents/689.html
https://www.ms.u-tokyo.ac.jp/~abenori/conf/20150817.html
http://www.sci.kumamoto-u.ac.jp/~narita/ss2011_proceedings.pdf
整数論サマースクール報告集 「楕円曲線とモジュラー形式の計算」
http://ntw.sci.u-toyama.ac.jp/ss2017/
http://www.ist.aichi-pu.ac.jp/~tasaka/ss2018/index.html
整数論札幌夏の学校 肥田晴三教授(UCLA)による講義を中心
https://core.ac.uk/download/pdf/42026066.pdf
ワイルズによるフェルマー予想の解決にも岩澤理論は大きな役割を果たした。 また、これ以外にも日本人数学者の結果が大きく寄与している。例えば、 肥田(晴三)の理論が有効に用いられたし、解決への道筋は谷山・志村予想を 経由するものであった。
https://www.math.kyoto-u.ac.jp/~tetsushi/nt_seminar.html
/////
数学者・志村五郎の死
5月3日、数学者の志村五郎プリンストン大学名誉教授が亡くなられたというニュースが流れた。志村五郎と言えば、フェルマーの大定理の証明においてもキーになった「谷山・志村予想」が有名であり、数学を学んだことのある学生ならその名を一度くらいは聞いたことがあるはずだ。
しかし、今回驚かされたことは、志村氏の死去のニュースがヤフーニュースで流れていたことだ。僕もヤフーニュースで志村氏の死を知った。いくら数学関係者の中で有名だったとは言え、ヤフーニュースで流れる程世間の注目を浴びているとは考えもしなかった。ヤフーニュースでこのニュースを見た人のうちどれくらいの人が興味を持ったのかはわからないが、数学研究というものが少しでも市民権を得られればと強く思う。ちなみに、谷山・志村予想のもう一人、谷山豊氏は、若くして自死をされている。
本屋の数学書コーナーに行くと、谷山豊全集というものが並んでいる。数学関係の全集とは一般の人にはなじみがないかもしれないが、全集が出されるほど谷山氏は偉大な数学者であった。そして志村氏も同様に偉大な数学者である。偉大な数学者や物理学者の研究に対しては、コレクテッドペーパーやコレクテッドワークスと言われる論文集が出されることがある。これらの論文集は偉大な学者の研究が一望できる非常に便利なものである。もしかしたら、これから志村氏の論文集も出るのかもしれない。と思ってAmazonで確認してみると、既に志村氏のcollected papersが出版されていた。やはり偉大だ。
/////
https://ja.wikipedia.org/wiki/志村五郎
サイモン・シン著 青木薫訳 「フェルマーの最終定理」
新潮文庫(2006年6月) (新潮社単行本 2000年)
数学をいかに教えるか 志村五郎著 (ナンセンスな教育を斬る)
/////
『世にも美しい数学入門』ちくまプリマー新書
藤原/正彦
1943年旧満州新京生まれ。数学者、エッセイスト。お茶の水女子大学理学部教授。米英の大学で教鞭をとった経験を持つ。数学者の論理的視点と日本文化を深く愛する情緒的観点による、独自の発言や作品で知られる
小川/洋子
1962年岡山市生まれ。早稲田大学第一文学部文芸科卒業。88年「揚羽蝶が壊れる時」で海燕新人文学賞を受賞。91年「妊娠カレンダー」で第104回芥川賞を受賞(本データはこの書籍が刊行された当時に掲載されていたものです)
/////
神様が隠している美しい秩序 藤原正彦/小川洋子「世にも美しい数学入門」
映画が終わってトイレに行きたくて案内表示に従って歩いていく。
ここかと思ったら女性用で男性はもっと先だと矢印の表示がある。
すぐそこかと思って歩いて行くが曲がりくねった廊下が続いてなかなかトイレにつかない。
そうする内に建物の外に出てしまった。
矢印の表示はそこをまっすぐに進めとある。
外はちょっとした広場になっていて、どうやらトイレは向う側の街のなかにあるようだ。
おりあしく雨が降っていて躊躇しているとどんどん強くなる。
俺は映画館の係りの男に「案内が不適当だ」と文句を言う。
男は一向に気にしない様子で、へらへらと「こういう仕事をしたこともない人が勝手なことを言う」と嘯いた。
「莫迦にするな、俺だっていろんな仕事をしてるから案内表示の作り方くらい分かるぞ」と言ってるうちに場面が変わって俺は別の建物の前でうろうろしている。
そうです、夢です。
トイレに行きたかったんですね。
それと今読んでいるカズオ・イシグロの「充たされざる者」という940頁もある小説、読めども読めども悪夢のなかを歩いて行くような小説、それが夢のなかに投影されたに違いない。
悪夢のなかのとらえどころのない不条理な出来事の連続を追うのに疲れて、すっきりとした数学の世界のことでも読もうと積読本棚から取り出したのが本書だ。
小川洋子の「博士の愛した数式」は6年前に読んで感心した。
その紹介文を↓に添付しました。
毎週月曜日の朝、社員が出勤する前に前の週に読んだ本のことを書いて本は寄贈した。
短い時間に書き飛ばした紹介文を読むと、あの頃が懐かしくてたまらない。
その小川が数学者・藤原正彦と数学の面白さを語り合った本書、眠くなるまでのつもりが面白くてとうとう読んでしまった。
「三角形の内角の和が180度である」、、そうなんだ、これほど簡単だけど考えれば不思議な美しさに満たされたことはない、これを干からびた知識として暗記させられることなくこの世界に潜んでいる不思議な物語として教えられたら俺だってひとかどの数学マニアくらいにはなれたのだ、、から始まって、友愛数の話とか完全数、「オイラーの公式」については「博士の好きな、、」の重要なモチーフだったなあ。
江夏豊の背番号が28という完全数(自分の約数をすべて足すと自分になる数、1∔2∔4+7+14=28、しかも連続した自然数の和で表わせる、1+2+3+4+5+6∔7=28)ということを発見した作家の小川がこの小説を完成させた。
“数学は実用に役立たないから美しく素晴らしい”、という。
レンホウさんはなんというだろうか。
藤原は天才数学者の生まれる条件を三つあげる。
第一には神とか自然、伝統などにひざまずく心があること。
第二は美しいものを身近に観て育つこと。いくら知能指数が高くても美に敏感でないと数学者にはなれない。
第三は精神性を尊ぶ。
インドのラマヌジャンなどが代表例だが、日本人数学者も微積分の関孝和、弟子の建部賢弘、類体論の高木貞治、岡潔、岩澤健吉、「フェルマー予想」の証明に大きな役割を果たした「谷山=志村予想」の谷山豊、志村五郎、、などノーベル賞に数学部門があれば少なくとも20人は受賞していただろうという。
ヨーロッパ、ギリシャの人々にはゼロの発見や虚数の理解は難しいとも。
たしかにヨーロッパでは16世紀頃まで記数法が確立していなくて位取りも知らなかったと云うのは驚きだ。
「6以上の偶数はすべて二つの素数の和で表わせる」というゴールドバッハの問題など素数のこと、そして円周率!「ビュッフォンの針の問題」(ある一定の幅の平行線の間にその幅の半分の長さの針を投げた場合、その針が線に触れるか針の間に落ちるかのどちらかになるのだが、線に触れない確率はπ[パイ]分の1になる)、極めつけは上にもあげた「オイラーの公式」だ。
神の不可思議な手を感じる。
しかし、ゲーデルの「不完全性定理」のことなどを考えると、整然とした美しい数学の世界にもカズオ・イシグロが書こうとした不条理の混沌が横たわっているような気配でもある。
ちくまプリマー新書
(1) 博士の愛した数式 小川 洋子 新潮社
気になっていて、人からもすすめられていたホン。このところ読書欲すらなくなって這いずり回っていたが、ときどき書棚から「早く読んでよ」とウインクしていた。
3時間足らず一気読みでした。保阪さんに言わせると一気読みできるような小説はいい小説とはいえないそうだが大きなお世話だ。不覚にも何度か涙ぐみながら読み終わるのがもったいない気持ちになるほど博士とルート少年、それに主人公の世界に引き釣りこまれてしまった。
交通事故の後遺症で80分しか記憶が続かない(ほんとはちょっと分かりにくい設定だが、この際細かいこといわない)老数学者が家政婦として派遣された主人公とその息子のルートの前に繰り広げる数字の世界。数字は、人間が考え出したものではなく最初からあったもの、神の人間への贈り物、その世界が謎に満ちていることは悪魔の存在証明。
オイラーの公式なんてすっかり忘れていた。π(円周率)とi(マイナス1の平方根、すなわち虚数)を掛け合わせた数でe(自然対数の底)を累乗し、1を加えるとなんとゼロになる!これをこの小説では「果ての果てまで循環する数と、決して正体を見せない虚ろな数が、簡潔な軌跡を描き、一点に着地する。どこにも円は登場しないのに、予期せぬ宙からπがeの元に舞い下り、恥ずかしがり屋の i と握手をする。彼らは身を寄せ合い、じっと息をひそめているのだが、一人の人間が1つだけ足し算をした途端、何の前触れもなく世界が転換する。すべてが0に抱き留められる。」と書く。
仏教・禅のホンで明かされる宇宙の秘密にも通じる数字の完璧な・摩訶不思議な世界。その前で交わされる3人の愛の物語。いいおとぎ話です。
/////
志村五郎さん死去 フェルマーの最終定理の証明に貢献 2019年5月3日 (令和元年5月3日)
数学の超難問「フェルマーの最終定理」の証明につながる予想を提唱した米プリンストン大名誉教授の志村五郎さんが3日、89歳で亡くなった。同大が発表した。
志村さんは整数論が専門。1950年代~60年代に、故谷山豊・東京大助教授と共に楕円(だえん)曲線の性質に関する「谷山=志村予想」を提唱。この予想を手がかりに、提示から350年以上数学者を悩ませてきた整数論の難問、フェルマーの最終定理が、英国のアンドリュー・ワイルズさんによって95年に証明された。
東大卒業後、同大助教授などを経て、64年から99年までプリンストン大教授を務めた。77年に米数学会「コール賞」、91年度に朝日賞を受賞した。
<数学の女王 「整数論 」 >数学者・志村五郎はなぜ東大を去ったか? 丸山眞男~戦後進歩的知識人との決別の理由/志村理論の始まりは・・・「すべての楕円曲線はモジュラーである」
志村五郎氏死去=米プリンストン大名誉教授・数学(「整数論」の世界的権威)300年来の超難問証明に貢献「フェルマーの最終定理」
300年来の超難問証明に貢献、志村五郎氏死去 (「整数論」の世界的権威)
NHK (今日、今晩放送! 全4回)数学ミステリー白熱教室 ラングランズ・プログラムへの招待 数学を統一する 数学の理論(特に対称性)の後!「楕円曲線」「表現論」「保型形式論」・・・
<数学 「整数論」の世界的権威> 300年来の超難問証明(フェルマー最終定理)に貢献、志村五郎氏死去 (志村五郎先生のご冥福を、お祈りいたします。)
/////
超難問「フェルマーの最終定理」証明の最重要人物である日本の数学者が死去
Point
■360年間解かれなかった数学の難問「フェルマーの最終定理」は、まったく無関係に思われたある命題を証明することで解決されている
■その重要命題が日本人数学者の提唱した「谷山-志村予想」だ
■そんな世紀の難問の解決に寄与した偉大な日本人数学者、志村五郎氏が5月3日89歳で死去した
平成の終わりと共に、一つの時代を見届けるかのように偉大な日本人数学者がこの世を去った。
志村五郎氏の名を知らなくても、数学の難問「フェルマーの最終定理」を記憶している人は多いだろう。
「フェルマーの最終定理」は1995年にイギリス生まれの数学者アンドリュー・ワイルズによって証明されたが、実は「フェルマーの最終定理」は志村氏の提唱した「谷山-志村予想」を証明することで解決している。
志村五郎氏の死去に伴い、氏が解決に大きな貢献をした「フェルマーの最終定理」という難問について、できるだけ分かりやすく振り返ってみよう。
志村五郎氏の訃報については、5月3日にプリンストン大学より発表されている。
「フェルマーの最終定理」をめちゃくちゃ簡単に説明する
「私はこの命題について、真に驚くべき証明を見出したが、それを記すにはここはあまりに余白が足りない」
360年前、フランスの数学者ピエール・ド・フェルマーはたったこれだけのメモを問題の脇に書き残してこの世を去ってしまった。
このツイッターにも投稿されていそうなフェルマーのメモは大変話題になり、以後この命題は「フェルマーの最終定理」と呼ばれることになる。
「フェルマーの最終定理」は、一見すると義務教育で教わる「ピタゴラスの定理」の拡張版だ。なんだか簡単に解けそうな問題にも見える。
この命題の「n=2」の場合が、直角三角形の辺の長さを求めるいわゆる「ピタゴラスの定理(三平方の定理)」である。
しかし「n」が2なら無限に解が存在するというのに、この「n」が3以上の数字になると「x,y,z」を満たす解は一切存在しなくなってしまう。これがいわゆる「フェルマーの最終定理」の命題だ。
この問題を最終的に解いたアンドリュー・ワイルズは10歳の頃、図書館でこの問題を見つけて「俺なら解けるんじゃね?」と思ったようだ。それはそれでとんでもないお子様だが、しかしこれが大きな罠だった。
「n」が3以上の場合というのは、つまり無限に存在する「n」について、それぞれ解が無いと証明しなければならないわけで、これは非常に困難な証明なのだ。
以後30年以上、ワイルズはこの問題の呪縛に捕らわれることになる。
世紀の難問に光を与えた日本人
「すべての楕円曲線はモジュラーである」
またまた一般人には意味不明なこの一文が、「谷山-志村予想」または「志村-谷山-ヴェイユ予想」の主張だ。
ちなみに数学における「予想」とは、真だと考えられるが、証明することはできていない命題のことだ。「予想」が証明されるとそれは「定理」になる。
だから「フェルマーの最終定理」も厳密には「予想」になるわけだが、そこは証明できたと断言したフェルマーに敬意を払っておこう。
楕円曲線とは数論(数の性質について論じる数学の分野)における理論の一つで、解くと解が数列のような形で複数得られる。
一方モジュラーというのは、簡単に言うと四次元空間の無限の対称性について論じたものだ。
そんな説明じゃさっぱり意味がわからないよ! という人は、下のエッシャーの絵画「サークルリミットⅣ」を見てほしい。
この絵はモジュラーの理論を使って二次平面上に複雑な対称性を持つ模様を描いているので、この絵を眺めて「なんかこういう不思議なパターンを定式化するお話なんだ」と思ってもらえればいいと思う。
この楕円曲線とモジュラーはそれぞれの解がよく似た数列のパターンで得られるのだが、「谷山-志村予想」はこのよく似た解が似ているのではなくて、同じなのだと主張したのだ。
数学のまったく異なる領域の問題が、実は同一の概念を論じているというこの主張は、とても大胆で驚くべきものだった。
最初にこのアイデアを閃いたのは、呼称の中に名を連ねる谷山豊だった。しかし谷山はこのアイデアを思いついた数年後に自殺してしまう。盟友の死を嘆きつつ、そのアイデアを定式化したのが志村五郎だった。
「谷山-志村予想」は一般的にはあまり知られる機会のない理論だが、その後の数々の数学者たちのよる研究で、「フェルマーの最終定理」と結び付けられることになる。
フェルマーの最終定理は楕円曲線に変換可能であり、その解に対応したモジュラーは存在しない事が示されたのだ。つまり「谷山-志村予想」が正しければ「フェルマーの最終定理」はその命題の通りに解を持たないことになる。
二人の日本の数学者によって生み出された数学理論は、このとき長年の数学の難問の解決と直接結びついたのだ。
異なる数学の世界をつなげ、360年来の難問を解き明かした数学者たち
アンドリュー・ワイルズ氏
無責任なフェルマーの証明宣言から360年。この難問は大勢の数学者たちの努力と挫折の末、1995年にアンドリュー・ワイルズによって「谷山-志村予想」を証明するという形で最終的解決を迎えた。
そこには数学の歴史を彩る様々な深いドラマがあった。
今、そんな数学の偉大な歴史に名を刻んだ一人の日本の数学者の人生が幕を下ろした。
50年以上前、自殺してしまった同僚谷山豊氏の偉大な閃きを定式化し、「フェルマーの最終定理」という数学の難問解決に寄与した志村五郎。彼は天国で谷山氏に良い報告をすることができただろう。
「フェルマーの最終定理」を巡る数学者たちのドラマに興味を持った人は、ぜひこの機会に『サイモン・シン著 フェルマーの最終定理 (新潮文庫)』を読んでみてはいかがだろうか。
/////
<数学の女王 「整数論 」 >数学者・志村五郎はなぜ東大を去ったか? 丸山眞男~戦後進歩的知識人との決別の理由/志村理論の始まりは・・・「すべての楕円曲線はモジュラーである」
<数学 「整数論」の世界的権威> 300年来の超難問証明に貢献、志村五郎氏死去 (志村五郎先生のご冥福を、お祈りいたします。)
数学者(整数論) 志村五郎氏死去 (谷山志村予想とフェルマーの最終定理 300年来の超難問証明に貢献) 2019年 5月3日
/////
6Number(シックス・ナンバー)の世界へ ようこそ!(偉人・有名人の記念日・誕生日)APS数学(APS-Math)
子供と計算
志村 五郎(しむら ごろう、1930年2月23日 - 2019年5月3日)は日本出身の数学者(整数論)。プリンストン大学名誉教授
小・中・高校生(研究課題)
「ダ・ヴィンチ コード」 6Number (シックスナンバー) を拡張としての「対称性の理論」? 例 1930年2月23日
/////
「フェルマーの最終定理」の歴史
概要
定理の主張は非常に簡単であり、
「方程式 xのn乗+yのn乗=zの乗 が n≧3 の場合、 x,y,zは0でない自然数の解を持たない」
というものである。
この定理が産声を上げたのは17世紀。フランスの数学者ピエール・ド・フェルマーが、彼の愛読書である『算術』(ディオファントス著)の余白に書き込んだメモがきっかけである。 さらに、
私はこの定理について真に驚くべき証明を発見したが、ここに記すには余白が狭すぎる。
とのコメントが記してあった。まるで誰かがそのメモを見ることを予想していたかのように。
『算術』の余白には他にも様々な定理が証明無しで記してあり、彼の死後、遺品を整理していた遺族によって発見され、これらのメモ書き付きで再販された。その後、何人もの数学者によってそれらの定理に証明が与えられていったが、最後まで残ってしまったのがこの定理である。証明は困難を極め、いつしかこの定理はフェルマーの「最終」定理と呼ばれるようになった(この時点では未証明だったので「フェルマー予想」と呼ばれることもあったが、フェルマーが証明したという伝説にちなんで『定理』と呼ばれていた)。
この定理が証明されるまでに、実に350年以上もの歳月を必要とした。
証明したのはイギリスの数学者、アンドリュー・ワイルズである。この為、現在ではワイルズの定理、あるいはフェルマー・ワイルズの定理とも呼ばれる。ワイルズはフェルマー以降に発見された定理や、当時最新の定理を用いてこの難題に対抗。350年もの長い間、多くの数学者を悩ませ続けてきたモンスターも、1995年にようやく沈黙したのである。
ちなみに“n=2”の場合に等式が成り立つ条件について述べたのは、所謂ピタゴラスの定理(三平方の定理)である。
証明の歴史
<1670年>
全ての元凶 フェルマーの死後、彼の息子が遺品整理の際にフェルマーの注釈(最終定理は48個中2番目)を含めたディオファントスの「算術」(親父が証明したって言ってるけどその証明が残ってない定理一覧)を出版する。
またこの時、フェルマー自身はn=4の時についての証明を書き残していた。
<1770年>
レオンハルト・オイラーがn=4を簡略化し、そこに虚数(二乗すると-1になる数)を使いn=3の時の証明に成功する。
そして、その解法はそれぞれの倍数についても同様に成り立つ為 「全ての素数が成り立たないことを証明する」事でフェルマーの最終定理を証明できるとした。
<1823-1847年>
ソフィ・ジェルマンが「フェルマーの定理が成り立つ時は、x,y,zのいずれかがnで割り切れなければならない」と証明(ソフィ・ジェルマンの定理)
ペーター・グスタフ・ディリクレとアドリアン・マリー・ルジャンドが、ソフィ・ジェルマンの定理を用いてn=5の時の証明に成功し、ディリクレは「n=14」の時についても証明する。(後にガブリエル・ラメが「n=7」の時の証明に成功する)
そして、1847年に、業を煮やした数学界が「フェルマーの最終定理」に懸賞金を付ける。
これにガブリエル・ラメとオージュスタン=ルイ・コーシーが競い合って証明を完成させようとするが、証明方法の致命的な欠陥をエルンスト・クンマーに指摘され、断念。
クンマー がその欠陥を直した「ぼくのかんがえたさいきょうのかず」(理想数)を提案するが、同時に「この方法(理想数)を用いてもフェルマーの最終定理は証明できない」とも結論付けた。
(懸賞金はクンマーが受け取った)
<1955年>
志村五郎が、友人谷山豊の発想を元に「全ての楕円曲線とモジュラー形式は、ゼータ関数が一致するのではないか」(谷山・志村予想)と提唱し、ラングランズ哲学の観点から注目される。
(ようするに、全然分野の違う二つの数式が似てるけど、もしかしたら繋がってるんじゃないか?という予想)
※ラングランズ哲学・・・全ての物には数学的な規則性や必然性があり、実は全部深い所でつながってるんじゃないの?という考え
※(谷山・志村予想)は、専門家の間では、今は、「志村予想」である。
<1984年>
ゲルハルト・フライが「フェルマーの最終定理を変形させると楕円方程式の形になる」
そして「その変形させた楕円方程式は谷山=志村予想を満たさない」と発表
その後、ジャン・ピエール・セールによって定型化される(フライ・セールのイプシロン予想)
<1986年>
ケン・リベットが「フライ・セールのイプシロン予想」を証明する
これを整理すると
・谷村志村予想は楕円曲線とモジュラー形式がゼータ関数でラングランズ哲学がフライセールのイプシロン予想で
フェルマーの最終定理のx,y,zに正解があるとすれば、谷山=志村予想は満たされない(谷山=志村予想は間違っている)
↓
言い換える(対偶をとる)と、谷山=志村予想が正しいと証明されれば、フェルマーの最終定理のx,y,zを満たす自然数の解は存在しない。
つまり、谷山・志村予想が正しいと証明出来れば、フェルマーの最終定理も証明出来るということになる。
<1993年>
6月23日
当時、岩沢理論における楕円曲線のゼータ関数の一部の証明に成功し、プリンストン大学の教授だったアンドリュー・ワイルズが、ケンブリッジのニュートン研究所の講演会で、証明に成功したと発表。
世間は大騒ぎになるが、のちの論文の審査で欠陥が見つかる。
当初はこの欠陥について、秘密裏に修復しようと沈黙していたが、論文の審査結果も論文自体も公表されないために、世間が混乱する。
<1994年9月19日>
ワイルズ「もう諦めよう…最後に岩澤理論を見直してみ…………!!!!」
(本人曰く「夢じゃないかと思うような素晴らしい証明」が頭に浮かんだという」)
<1995年>
ワイルズの証明に不備がないことが確認され、330年もの歴史に決着がついた。
悪魔の証明
この証明は、300年以上もの間証明されなかったことから悪魔の証明とも呼ばれた。
といっても「証明するのが原理的に不可能」という意味の悪魔の証明ではなく、「数々の数学家を地獄に落とした」という経歴がそう呼ばせるのである。
1847年、クンマーが「現代の数学では不可能」と結論付けてから、1984年にフライ=セール予想が発表され具体的な証明方法が見つかるまでの間も、もちろんこの証明に挑戦する数学家たちは多かった。
特に1900年代に、大富豪ヴォルフスケールが10万マルク(日本円で十数億円)という莫大な懸賞金をこの定理の証明にかけた為、フェルマーの最終定理ブームが起こったほどである。
…がしかし、歴史的に見ても、もちろん証明されていないどころか、特にコレといった発見すらない。
つまり「まったくの無駄な時間」を、この問題に挑戦させた多くの人々に味合わせたのである。
無論、未解決問題の証明には長い長い時間を要する。5年10年では足りないだろう。
だがもし、人生の中の10年という時間をこの問題の証明に費やしても成果が出なかったらどうなるか?
答えは決まって「もっとのめりこむ」のであった。だってすでに10年もの歳月を使ってしまったのだから……。
証明しなければ報われない……だがしかし、証明さえすればこの10年は無駄ではなかった!それどころか十数億!さらには数学界における永遠の栄誉まで手に入る!
…そう信じて、死の直前まで理想を抱いたまま倒れたものがどれだけいただろうか……。
そして、このブームに乗っかったのは数学素人の方が多かったとも言われている。
理由は、この問題の悪魔的要素の一つである「理解のしやすさ」である。
難しい専門用語もなく、理解しがたい数式も無い、たった一行の数式を証明するだけである為に「もしかしたらできちゃうんじゃ」と勘違いする人間が数多く存在した。
さらに、フェルマーの一言「真に驚くべき証明」という言葉から「小難しい理論なんて必要じゃないんじゃない? ひらめき一発で解けるような、そんな問題なんじゃないか?」と勘違いを起こさせた。
実際に、数学者達は「誰も解けてないんだから無理だろう」と諦め、まともに取り組もうとしなかったが、一般人はそうは思わず、一人また一人と地獄送りへなっていった……フェルマー…恐ろしい子…!
一方で、この問題の証明を夢見て数学者の道を志した人間も少なくなく、多くの若者を数学の世界に招き入れたという正の側面も存在する。
最終的に証明に成功したアンドリュー・ワイルズもまた、そういった若者の一人であったのだが、数多の天才が敗れていったこの問題に手を出すことを恩師のジョン・コーツに止められ、数学者になってからしばらくは別の研究を続けていた。
……が、自身の専門分野である楕円曲線の研究がフェルマーの最終定理の内容と繋がることに気付き、それをきっかけにこの問題の証明へとのめり込んでいくいことになる。
ワイルズはこの証明に挑戦するために自室に引きこもり、講義や生徒指導など最低限の仕事しかこなさなくなったと言われている。
それどころか、定期的な発表会でさえ他の研究をしていなかったワイルズは未発表の論文を限りなく薄めて引き延ばすという方法をとり、時間を稼いでいた。
当然、彼の評価は「まともに仕事をしない」「大した成果を出さない」と、失墜していき、同僚からは「人が変わったように無能になった」と言われていた。
そんな生活を、彼は7年も続けていた。彼もまた、もしも結果が出ていなければ、一生を台無しにする所だったのかもしれない…。
(因みに、ヴォルフスケールの懸賞金はワイルズが受け取ったが、当時十数億円と言われた懸賞金は、世界大戦によるハイパーインフレにより500万円ほどの価値であった)
//////
文系用読者:「教育者」としてのあの頃の感覚として読む
//////
フェルマーの最終定理 【著者】サイモン•シン(青木薫 訳) 【発行】新潮社(新潮文庫)
整数に関する問題は、問題を理解するのはやさしいが解くのはとてつもな く難しいことが多い。この本の表題ともなっている「フェルマーの最終定理」 の証明もそのような整数問題の1つであり、アマチュア・プロを問わず 300 年もの間、多くの数学者の挑戦を退けてきた問題である。1995 年最終的に 証明を成し遂げた勝者はアンドリュー・ワイルズという数学者であった。し かし、その証明への取り組みは試練に満ちており、7年間の隠密行動、そし て1度は証明できたと発表して、その後証明に穴があることがわかり1年余 りの間、公にさられた状態での穴埋め作業の末ようやく証明完了というドラ マが書かれています。谷山、志村、岩澤、肥田といった日本人数学者もからみ、困難な問題にチャレンジする人間模様を描いた物語として、一読を。
//////
理系用読者:「数学者」としてのあの頃の感覚として読む
//////
【書名】「解決!フェルマーの最終定理 現代数論の軌跡」加藤和也著、日本評論社
( フェルマーの大定理が解けた!―オイラーからワイルズの証明まで (ブルーバックス) 足立恒雄著 新書 )
( フェルマーの大定理―整数論の源流 (ちくま学芸文庫) 足立恒雄著 )
1993年6月23日に、プリンストン大学のA.ワイルスが、フェルマーの最終定理の証明を宣言し、その後、証明の不備が見つかり、1年以上に苦考の末、1994年9月19日にその修正に成功したこの期間に、著者が証明の解説として数学セミナー読者向けに書いたものを集めたものである。厳密性はないが、極力丁寧に、正確に伝えようとする、著者の誠実さと、理解の深さが伝わってくる。原論文の 1. A. Wiles; Modular elliptic curves and Fermat's last theorem, 2. R. Taylor, A. Wiles; Ring theoretic properties of certain Heck algebras にも、整数論にも、非常に惹きつけられる内容だった。購入時にも読んだと思われるが、詳しく覚えていないところをみると、理解しようとはしていなかったのかもしれない。むろん、今回も十分な時間をかけて読んだとは言えないが。
以下は備忘録
「砂田利一『基本群とラプラシアン、幾何学における数論的方法』」(p.37)「ワイルス『ぼくは、フライとリベットの結果を知ったとき、風景が変化したことに気がついた。(中略)この時まで、フェルマの最終定理は、何千年間もそのまま決して解かれることがなく数学がほとんど注目することがない数論の他の[散発的かつ趣味的な]ある種の問題と同じようなものに見えていた。フライとリベットの結果によって、フェルマの最終定理は、数学が無視することのできない重要な問題の結果という形に変貌したのだ。(中略)ぼくにとって、そのことは、この問題がやがて解かれるであろうと言うことを意味していた』」(p.67)「清水英夫著『保型関数I, II, III』、志村五郎著『Introduction to the theory of automorophic functions』、Knapp『Elliptic curves』、河田敬義著『数論I, II, III』、藤崎源二郎・森田康夫・山本芳彦著『数論への出発』、上野健爾著『代数幾何学入門』、J.H.シルヴァーマン・J.テイト著(足立恒雄〔ほか〕訳)『楕円曲線論入門』、土井公二/三宅敏恒著『保型形式と整数論』、肥田晴三著『Elementary theory of L-functions and Eisenstein series』、吉田敬之著『保型形式論: ─現代整数論講義─』、N.コブリンツ著(上田勝〔ほか〕訳)『楕円曲線と保型形式』」(p.123,4)「田口雄一郎さんの手紙に『Deligne さんの家はこの道の始まりのところ、森の入り口にあります。Deligne さんといへども、森羅万象の真理の最奥に至る道のほんの入口のところにゐるに過ぎないといふ、これは自然による卓抜な比喩であると思われます。ところが、恐ろしいことに彼の子供たちは毎日この道を通って森のむかうの学校に通ってゐるらしいのです。』とありました。フェルマーからの350年は大進歩でしたが、人類が続いてゆけば、それは今後何千年の数学の序曲であり、何段も何段も自然の深奥への新しい段階があることでしょう。」(p.239)「ガウス『どのように美しい天文学上の発見も、高等整数論が与える喜びには及ばない』ヒルベルト『数論には古くからの問題でありながら、今日も未解決のものが少なくない。その意味で、多くの神秘を蔵する分野であるが、他方、そこで展開される類体論のような、世にも美しい理論がある』」(p.245)「岩澤健吉『代数体と、有限体上の一変数関数体は、どこまでも似ていると信じてよい』」(p.246)「志村五郎は『整数論いたる所ゼータ関数あり』と述べたが今その言葉に『ゼータ関数のある所 岩澤理論あり』と続けて考えたい」(p.261)『ゼータ関数のある所 肥田理論あり』ともいえる。
//////
「フェルマーの最終定理」を理解したい人(参考 書籍紹介)
N.コブリンツ著(上田勝〔ほか〕訳)『楕円曲線と保型形式』
土井公二/三宅敏恒著『保型形式と整数論』
志村五郎著『Introduction to the theory of automorophic functions』
J.H.シルヴァーマン・J.テイト著(足立恒雄〔ほか〕訳)『楕円曲線論入門』
Knapp『Elliptic curves』
河田敬義著『数論I, II, III』
藤崎源二郎・森田康夫・山本芳彦著『数論への出発』
上野健爾著『代数幾何学入門』
肥田晴三著『Elementary theory of L-functions and Eisenstein series』
清水英夫著『保型関数I, II, III』
吉田敬之著『保型形式論: ─現代整数論講義』
砂田利一著『基本群とラプラシアン、幾何学における数論的方法』
論文集 (志村五郎)
Collected Papers. I: 1954-1965 (Hardcover ed.). Springer. (2002). ISBN 978-0-387-95406-6.
Collected Papers. II: 1967-1977 (Hardcover ed.). Springer. (2002). ISBN 978-0-387-95416-5.
Collected Papers. III: 1978-1988 (Hardcover ed.). Springer. (2003). ISBN 978-0-387-95417-2.
Collected Papers. IV: 1989-2001 (Hardcover ed.). Springer. (2003). ISBN 978-0-387-95418-9.
など
//////





