シミュレーション 【中半】コンピュータ・シミュレーション …

 

物理学

例えば、木の葉が舞い落ちる動きを通常の手計算で導き出す事は不可能であった。これは重力や空気抵抗だけでなく、木の葉自体の動きによる空気の状態の変化などが複雑に絡み合っているからである。この、カオティックな振る舞いに対して、単純計算を膨大に繰り返す事の出来るコンピュータによって、ある程度の周期性や規則性を見出されうる。

気象学・気象予報

[icon] この節の加筆が望まれています。 (2015年7月)

コンピュータによる、台風の48時間の動きのシミュレーション

最近の気象予報には、コンピュータ・シミュレーションは欠かせない。地球という球体上を格子(メッシュ)に区切ったモデルを用いて、スーパーコンピュータを用いてシミュレーションを行っている。コンピュータの性能が向上するにつれて次第に格子の大きさを小さくすることができるようになるとともに、予測精度が向上した。

メッシュ予報」も参照

工学

電子工学

電子工学においては、コンピューター上で回路の設計や実験をするのに、SPICEやSPICEを起源とする電子回路シミュレーション・ソフトウェア等が使われている。電子回路を所定の書式でシミュレーターに入力(GUIによる入力が可能なものも多い)すると、各電子部品の電気的特性を元に回路の動作が計算され、回路の動作を調べることができる。

無線工学

アンテナのシミュレーション

無線工学においては、アンテナの設計をするのにアンテナ・シミュレーション・ソフトウェアが用いられる。アマチュア用途ではMMANAやMMANA-GAL等のフリーソフトがある。アンテナの物理的な形状を入力すると、自由空間や特定の地上高におけるアンテナ上の電圧分布、電流分布、共振周波数、給電点におけるインピーダンス特性、SWR特性などを計算により求めることができる。短縮型アンテナやマルチバンド・アンテナの設計のために、延長コイル、短縮コンデンサ、LCトラップ等を挿入した場合のリアクタンス値を求めることもできる。

電波伝播のシミュレーション

無線工学において、電波伝播(電波の伝わり方)をシミュレーションするのに電波伝播シミュレーション・ソフトウェアが用いられる。VHFUHFのテレビ放送局や中継局のサービスエリアを調べるために、アメリカの研究者 A. G. Longley と P. L. Rice とが1968年Longley-Rice Modelアルゴリズムを開発・発表した。このアルゴリズムは 20 MHz - 20 GHz の周波数に適用でき、これを基にした電波伝播シミュレーション・ソフトウェアが、日本のいくつかの電気通信コンサルタント会社により開発されている。[7]

シミュレーションするには、ソフトウェアに、大地の導電率比誘電率、大気の屈折率、送信場所や受信場所の標高周波数、電波の偏波面、アンテナの利得や地上高、送信機の出力、受信機の感度などの値を与える。また、シミュレーション対象地域のデジタル地形データ(たとえばNASAのFTPサイト[8]からダウンロードできる)を与える。すると、電波の大気による屈折、地形による反射回折、電波が伝わるうえで受ける減衰等を計算し、電波の届く範囲をシミュレーションする。結果は、数値や、地図上に電波の強さごとにグラフィカルに色分けして示される。[7]

フリーソフトとしてはカナダアマチュア無線家 Roger Coude(VE2DBE)が1988年に開発した Radio Mobile[9] がある。[7]

通信プロトコルのシミュレーション

TCP/IP等の通信プロトコルの分野では日々新しい方式が提案されている。IEEEITU、あるいは日本の電波産業会ARIB)などで次世代の通信プロトコルの標準規格が議論されるが、このとき各提案者の案として提示されている規格が、さまざまな条件下でどのような特性を持っているのかを比較検討する必要がある。このような局面で通信プロトコルのシミュレーション が必須となっている。2層(データリンク層)以上の通信プロトコルの規格は状態遷移図で記載されることが多いが、記述された状態遷移等の処理、条件をコンピュータ上で疑似し、スループットやエラー処理などの評価を行う。

学術機関で用いられるオープンソースソフトウェアではns[10] 等があるが、企業や研究所のレベルではQualnetOPNET Modeler等の商用のシミュレータを使用するケースが多い。

この分野のシミュレーションでは信号処理の部分をMatLabやSimlink、電波伝搬の部分をWirelessInSight, Winprop, Atoll等の他のシミュレータや計算ソフトと連携させたりする場合もある。また特に無線、移動体の分野では各通信機の動きも重要な要素となるためその部分に関して他のツールや実際の計測値などと連携させる試みもなされている。

QualnetOPNET Modeler等の商用ツールでは実際のネットワーク上を流れる通信パケットをシミュレータと接続できるものもあり、仮想のネットワークを利用した時の動画品質も確認などにも使われている。

軍事

軍事分野においては戦闘状況をシミュレートしたモデル研究が行われており、地形、時間、損害率、兵員数、戦闘価値、移動速度、発見率、命中率などの要素から戦闘の推移、両軍の損害などを導き出すことができる。また指揮官制、補給計画立案、戦術研究、海空軍の訓練などでシミュレーションは用いられている。

また、最近の戦争においては情報を伝達するための通信の確保は戦況を左右する重要な要素であるため、部隊展開時に山間部や市街地などにおいても兵員同士が途切れることなく通信できることをシミュレーションするシステム(JCSS:旧称 NetWars)をアメリカ国防情報システム局 (DISA)が開発している。

計算機

電子計算機により電子計算機をシミュレーションすることができる。これにより、たとえばまだ実際には設計段階で実機の無い計算機のためのソフトウェアを開発したり、動作を確認することができる。 あるいは実在の計算機をシミュレーションすることにより、実際にそのアーキテクチャーの計算機ハードウェアを持たなくてもソフトウェアを実行できる。 シミュレーションにより構築された計算機は仮想マシン(VM)とも呼ばれ,マシン構成を自由に変更したり、論理的に別の仮想マシンを立てて処理することでデータアクセスの独立性を保証することでセキュリティを確保したり、仮想マシンの状態を保存しておくことでシステムの瑕疵等による障害からの回復を容易にすることなどができる。

訓練としてのシミュレーション

大型車のシミュレータで訓練中の兵士

シミュレーションは一般市民や兵士の訓練に使われることが多い。これは、実際の装置や兵器を訓練に使用するのがコスト的に高価すぎたり、単に非常に危険であるという理由からである。この場合、安全な仮想環境で意味の有る訓練が行われる。特に、実際なら生命に関わるような失敗をしても許される点は重要である。

訓練におけるシミュレーションは3つに分類される。

  • 「ライブ」シミュレーション - 実地でシミュレートされた装備を身につけた人間が訓練を行う。
  • 「仮想」シミュレーション - 仮想環境でシミュレートされた装備を身につけた人間が訓練を行う。
  • 「構築型」シミュレーション - 仮想環境でシミュレートされた装備を身につけたシミュレートされた人間が訓練を行う。これは、ウォーゲームと呼ばれるものが進化したものである。

フライトシミュレータ

詳細は「フライトシミュレーション」を参照

フライトシミュレータは、地上で航空機操縦士を訓練するのに使われる。この場合、操縦士がシミュレートされた航空機を墜落させても生命に危険はない。特に実地では訓練が困難な危険な状況を設定して訓練することが可能である。例えば、エンジンが停止した状態での着陸、電気系統が停止した状態での着陸、油圧系統が機能しない状況での着陸などである。最近のシミュレータは視界の表示や油圧による姿勢制御が高度に進化している。シミュレータは通常、実際の訓練用航空機よりも低価格である。

ドライブシミュレータ

詳細は「ドライビングシミュレーター」を参照

ドライブシミュレータは実際の自動車の特性を仮想環境内で再現する。外的要因や条件を再現することで、運転者が実際の自動車を運転しているかのように感じさせる。訓練目的で使われることが多いが、研究目的でも使われる。

船舶シミュレータ

船舶シミュレータは、船員の訓練に使われる。特に大型の船舶をシミュレートするものが多い。種類としては、操船訓練を行なう操船シミュレーター、エンジンプラントの運転訓練を行なうエンジントラブルシミュレーター、荷役訓練を行なう荷役シミュレーターなどがある。

プラントシミュレータ

化学プラントのプラントシミュレータは、物理モデルに基づいて化学プラントの動的な挙動を模擬するものである.さまざまな条件における挙動を実現できるため,主に,プラントを運転するオペレータに対する運転操作の訓練に用いられている.

教育におけるシミュレーション

教育におけるシミュレーションも訓練の一種と考えられ、特定の主題に沿って行われる。ビデオを鑑賞し、問題の解決策を話し合い、ロールプレイを行うなどの手法がある。企業によるビジネス教育の一環としてもシミュレーションが採用されつつある。リスクのない仮想環境でビジネス戦略の実験をしたり、ケーススタディーの学習における拡張手段として用いられる。

軍事教練におけるシミュレーション

兵士が行軍や歩兵戦闘などをシミュレーションするもの。Operation Flashpoint: Cold War CrisisArmA: Armed Assaultから発展したVBS1・VBS2が米豪等の軍で採用されている。

宇宙開発とシミュレーション

プールを用いたシミュレーション

宇宙開発の船外活動のシミュレーションとしては、ひとつはプールを使う方法がある。NASAなどで採用されている。水の浮力によって、宇宙空間の無重力状態に、若干似た状態を作りだすことができ(※)船外作業の体験・訓練を行うことができる(※完全には同じではないが、宇宙飛行士は、自分の身体が浮いてしまっている状況での作業の困難さを体験することができる)。ロボットアームの動き、作業手順などのシミュレーションは、コンピュータを用いたものも用いられ、実際の操作レバーと、コンピュータ画面内に作りだされた映像で模倣・確認しつつ訓練を行うものである。

医療・救急用シミュレータ

心肺蘇生法習得のためのダミー人形を用いたシミュレーション

医療シミュレータは、医療に従事する者への治療法/診断法/概念/意思決定についての教育の目的で、近年開発が盛んになってきている。医療シミュレータによる訓練は、単純な血液採取から腹腔鏡手術まで各種存在する。また、新型医療機器の開発においてもシミュレーションは重要である。医療シミュレータでもコンピュータが重要な役割を担っている。実物大の人形を用いたシミュレータでは、人形への薬物投与などによって適切な反応を示すようにプログラムされている。視覚をコンピュータグラフィックスで擬似する場合、触覚は訓練者の動作に反応するようプログラムされたフィードバック機器で再現する。この場合、現実性を増すために実際の患者のCTMRIのデータを用いることが多い。より簡便なシミュレーションとして、ウェブブラウザで操作できるものもあるが、触覚は再現されず、キーボードとマウスで操作することになる[1]

 

経済・金融