ゲーム理論 ⅩⅦ【】応用分野 生物学

 

宗教学

アダムとイブアルブレヒト・デューラー)。ブラームスはアダムvs.イブの分配ゲームや、アダムとイブvs.神の制裁ゲームなどの2段階完全情報ゲームを分析することによって天地創造や楽園追放について考察した[401]

政治学者のスティーブン・ブラームス1980年に出版された著書 Biblical Games において旧約聖書の中のさまざまな物語を読み解き、神の啓示とは何か、信仰とは何か、人はなぜ争うのかなどの旧約聖書のエッセンスの解明を試みている。ブラームスが用いたのは非協力ゲーム理論であり、その多くは2人のプレイヤーが2つの戦略を持つ2段階完全情報ゲームであり、さらにそれよりも大きなゲームは展開形として説明されている。本書においてブラームスはゲーム理論を通じてユダヤ・キリスト教文化の基本的性格についての深い示唆を与えたと評価されている[401]

また、オーマンとシュマイドラーは1985年に発表した "Game theoretic analysis of bankruptcy problem from the Talmud" という論文において、ユダヤ教教典バビロニア・タルムード』に登場する破産問題を協力ゲーム理論によって分析している。問題となった『バビロニア・タルムード』の記述は以下のように要約される(金銭の単位はに変更してある)[412]
「ある人が亡くなり、100万円の遺産が残された。この人は、生前、3人の相続者A、B、Cにそれぞれ100万円、200万円、300万円の遺贈をすることを約束していた。遺産の額が不足してしまった訳であるが、この場合には、100万円を三等分して100/3万円ずつ3人で分ける。もし、200万円の遺産が残った場合には、Aには50万円、BとCにはそれぞれ75万円ずつ分ける。もし300万円の遺産が残った場合には、A、B、Cにそれぞれ50万円、100万円、150万円を分ける。」
遺産の総額が100万円の場合は均等分配、300万円の場合は比例分配である一方で200万円の場合の分配の基準が直観的には理解しがたく、この『バビロニア・タルムード』の記述は永らくユダヤ人たちを悩ませてきたが、オーマンとシュマイドラーはこの分配方法が協力ゲーム理論の「仁」という解概念によって説明できることを明らかにしたのである[412]。その概要は、以下の通りである。すなわち、財産総額を E, 債権者の集合を N = {1, 2, …, n} とし各債権者 i の債権額を di とすると、Ed1d2, …, dnは全て正値であり、E < d1 + d2 + ⋯ + dn が仮定される。また、任意の提携 S ∈ N に対する特性関数 v を {\displaystyle v(S)=\max\{0,E-\sum _{i\in N-S}d_{i}\}}と定義すれば、この特性関数 v の値は提携 S が獲得可能な遺産の総額と解釈できる。n = 3として E = 100, 200, 300 それぞれの場合の v の仁を計算すると、それぞれ (100/3, 100/3, 100/3), (50, 75, 75), (50, 100, 150) となり、『バビロニア・タルムード』の記述が協力ゲームの仁と一致していることが確認できる[413]

これらの他にも、鈴木光男は著書『ゲーム理論の世界』(1999年)において、河合隼雄古事記論を協力ゲーム理論によって解釈することを試みている。『古事記』における神話の構造は3人ゲームで、日本神話の論理は統合ではなく均衡に向かうものであり、その中心が空である「中空均衡構造」であると結論付けており、こうした解釈は現代の日本政治の状況を観る上でも含意を持つという[414]。さらに鈴木は、古事記をはじめとする日本神話のゲーム理論的表現による日本人の深層心理や日本人の持つ知の特質を研究すること、さらには、洋の東西を問わず宗教や倫理など先哲の思想をゲーム理論の言葉で表現し、それらの相互関係を研究することの有用性を主張している[415]

教育学・教育政策

近年米国日本でも導入されている学校選択制の運営にもゲーム理論の知見が用いられている。学校選択制とは、家庭が近隣地域のどの公立小学校・中学校に子どもを通学させるか選択可能な制度である。一見すると学校選択制は行きたい学校を単純に選択するだけなので戦略的状況とは関係なさそうに思われるが、各学校には定員があるため、学校選択制を利用して入学を希望する学校を選択した際にその学校に入学できるか否かは他の児童・生徒の選択に依存するのである[416]マサチューセッツ州ボストン市において1999年に導入された学校選択制の方式はボストン方式と呼ばれるが、この方式において児童・生徒は真の希望順位とは異なる希望順位を制度運営者に提出することによって得をする可能性がある等の問題があることが知られている[417]。この問題は2005年受入保留方式と呼ばれる方式を導入することによって解決されている[418]。このような主体(生徒)と主体(学校)をいかに組み合わせるかを分析する研究領域としてマッチング理論があり、学校選択制のさらなる改善のために現在も研究が行われている。学校選択制の研究においては複雑な一般均衡的効果を考慮する必要があるが、そもそもどのような一般均衡的効果を目標に制度設計すべきかが定まっていない点が課題として指摘されている[419]

会計学

会計学の分野では1980年代から既にシャープレー値や仁といった協力ゲームの解概念が費用分担の問題などに積極的に応用されていた[319]。近年では、会計制度の性質や位置付けが大きく変容していることから事実解明的な方法を用いて新たな会計制度を設計する必要性が高まっており、非協力ゲーム理論の手法を用いて情報開示制度、内部統制監査制度、会計専門職教育制度などの会計制度を分析する研究も現れている[420]。ゲーム理論や実験経済学の手法を応用した先駆的な研究により『実験制度会計論[420]』は2015年日経・経済図書文化賞を受賞している[421]