ゲーム理論 ⅩⅥ【】略年表

 

応用分野

生物学

ミュールジカの二頭のオス(コロラド州)。「ミュールジカのナワバリ争い」は生物ゲームの典型的な例である[71]

生物学へのゲーム理論の応用は1970年代から既に研究されていたが、現在進化ゲーム理論evolutionary game theory)と呼ばれる分野の基礎を作ったのはイギリス生物学者ジョン・メイナード・スミスであった[408]。メイナード・スミスは非協力ゲームのモデルを動物の闘争や共存の分析に適用して、ナッシュ均衡よりも強い進化的に安定な戦略evolutionarily stable strategy)と呼ばれる概念を提示して自然淘汰のメカニズムが働く生物ゲームの安定状態、すなわち突然変異によって侵入されないような集団の安定な状況としての戦略を分析した[409]。生物学において研究されている進化プロセスの代表的なゲーム理論のモデルとしてレプリケータ動学: replicator dynamics)がある。

ゲーム理論の生物学への応用は非常に自然な形でなされた。メイナード・スミスは生物学へのゲーム理論の応用について著書『進化とゲーム理論』(1982年)の冒頭で次のように語っている。

逆説的と思えるが、ゲーム理論はそれが最初めざしていた経済行動の分野よりも、生物学の方にずっとうまく応用できることが分かってきたからである。それには理由が二つある。一つは様々な結果の価値(例えば、経済的な報酬、死の危険性、良心のとがめを受けない喜びなど)を一元的な尺度で測ることが理論にとって必要となっていることである。人間に応用する際には、この尺度として「効用」という幾分人工的で心地のよくない概念が用いられている。それに対して生物学では、ダーウィンの適応度が自然で正真正銘の一元的な尺度となっている。二つめは、より重要であるが、ゲームの解を求める際に、人間の合理性という概念が、進化的な安定性という概念に置き換えられることである。このことの利点はこうである。生物の集団が安定的な状態に進化すると期待するのは理論的に十分根拠のあることであるのに対し、人間が常に合理的に行動するかどうかは疑問の余地がある。

— John Maynard-Smith (1982) Evolution and the Theory of Games[410]

生物学へのゲーム理論の応用は、経済学にとっても重要な意味があった。ものを考えることすら出来ない動物の行動のいろいろなパターンがナッシュ均衡によって説明されたという数理生物学の成果は、従来の経済学において仮定されていたプレイヤーの無限の計算能力がナッシュ均衡を実現するために必ずしも必要ではないという証左であった[411]数理生物学から生まれた進化ゲームは経済学に逆輸入され、プレイヤーの学習、模倣や世代間教育、文化継承などを表現するモデルとして経済学や社会学にも応用されている[189]

宗教学