ゲーム理論 Ⅸ【後】「社会的ゲームの理論について1928年… 

 

1950年代

ジョン・ナッシュ。彼の波乱万丈な半生はハリウッド映画ビューティフル・マインド』のモデルにもなった[268]

第二次世界大戦終了後、ジョン・フォン・ノイマンがゲーム理論の講義を担当していたプリンストン大学には若い優秀な学生が集まっており、その一人がジョン・ナッシュ1994年ノーベル賞受賞)であった。ナッシュは1950年に発表した論文の中で初めて非協力ゲームを定義し、非協力n人ゲームの均衡点(ナッシュ均衡)の存在を証明した[269]。ただし、非協力ゲームnon-cooperative game)という言葉が登場したのはナッシュの博士論文でもあるNash 1951が初めてであった。フォン・ノイマンは非協力ゲームよりも協力ゲームの方が社会的に重要であると考えていたが、ナッシュ均衡がCournot 1838によって分析された寡占市場均衡の一般化であることを理解して初めてナッシュ均衡の概念を受け入れたと言われている[270]

またナッシュはフォン・ノイマンらの『ゲームの理論と経済行動』において全く論じられていなかった「交渉と妥協点」の理論を構築した(ナッシュの交渉解)(Nash 1953)。このナッシュの研究手法は「公理論的アプローチ」と呼ばれる後のゲーム理論研究の手法の先駆けである[271]。さらにNash 1953の交渉理論は「非協力ゲームの状況からいかにしてプレイヤーが協力ゲームの状況へ移行するか」という問題を提起しており、この問題は「ナッシュ・プログラム」と呼ばれる重要テーマとして現在も研究が続いている[35][271]

サンタモニカのランド研究所。米国空軍の援助によって1948年に設立された。RANDという名称は"Research and Development"に由来する[272]

1950年代には米国サンタモニカランド研究所がプリンストン大学と並ぶゲーム理論の国際的な研究拠点であった。当時のランド研究所にはフォン・ノイマン、モルゲンシュテルン、シャープレーミルナー、ナッシュなどが在籍しており、様々な研究が行われていた。特に、囚人のジレンマ実験や協力ゲーム実験などの実験経済学の先駆的研究は有名である[273]。なお、数学者ミルナーはランド研究所における実験がゲーム理論の結果に合わなかったことを理由にゲーム理論の研究を辞めてしまったと言われている[274]。しかし、この「囚人のジレンマ」実験による理論の反証は「実験が同じ2人のプレイヤーの繰り返しによって行われるからであり、それは1回限りのゲームとは異なる状況である」と解釈され、1950年代末には「囚人のジレンマ」型ゲームでも無限回繰り返すことによってパレート効率的な均衡利得が実現することが知られるようになった。この定理は誰が最初に証明したのか定かでないため、「フォーク定理(民間伝承定理)」と呼ばれている[275]1953年には「プリンストン赤本シリーズ」として『ゲーム理論論文集第2巻』がハロルド・クーンアルバート・タッカーによって編纂・刊行された。この論文集の中で、ロイド・シャープレーがフォン・ノイマンの1928年の研究をn 人協力ゲームに拡張し、シャープレー値と呼ばれる概念の存在を証明している。また、クーンはこの論文集の中で、行動戦略完全記憶などの概念を導入し今日「展開型ゲーム」と呼ばれる理論の基礎を築いている。さらに、デイヴィッド・ゲールは戦略集合が無限の場合に「ツェルメロの定理」が成り立たないことを証明した[276]

1953年にGilliesの学位論文の中で初めて登場したコアの概念はタッカーらの編著『ゲーム理論論文集第4巻』(1959年)の中で特集されて初めて学界に認められるようになった。この論文集の中でマーティン・シュービック一般均衡理論における契約曲線が協力ゲームのコアであることを示しており、これ以来、経済学におけるコアの重要性が認識されるようになった[277]

教育界では1952年に MacKinsey が Introduction to the Theory of Games という教科書を出版しており、学生でも容易にゲーム理論を学習することのできる環境が整備された。ただしこの教科書の大部分はゼロ和二人ゲームであり、協力ゲームについての解説は少なく、非協力ゲームに関しては懐疑的な記述が見られる[278]。日本においては興津洋一による翻訳が1961年に出版されている[279]

1960年代

ハーバート・スカーフ英語版

1961年10月4日から10月6日までの三日間、モルゲンシュテルンとタッカーを中心にプリンストン大学でゲーム理論のコンファレンスが行われた[280]。このコンファレンスにおいてシャープレーとスカーフがプレイヤー集合が無限の場合の研究報告したことが契機となり、コアに関する極限定理の研究が1960年代のゲーム理論の中心テーマとなった[281]。これは従来の経済学(一般均衡理論)とゲーム理論の関係性を巡る研究であり、ロバート・オーマン1964年1966年の論文により、協力ゲームにおいて経済主体が無限に存在すれば一般均衡理論における市場均衡が存在することが明らかとなった[282]。ゲーム理論の研究が一般均衡理論に新たな展望をもたらし、その研究に大きな転換を招き、より具体的な要素を含む体系の考察を促し、従来の一般均衡理論がゲーム理論の特殊ケースと見なされるようになったことで、ゲーム理論は本格的に一般の経済学者からも受け入れられるようになった[283]

また、ロバート・オーマン2005年ノーベル賞受賞)とMaschlerは1961年のコンファレンスにおいて「交渉集合」という協力ゲームの新しい解概念を提案しており、Davis and Maschler 1965の「カーネル」やSchmeidler 1969によるnucleolus)などの新しい解概念が生まれる契機となった[284]。このコンファレンスで出会ったジョン・ハーサニラインハルト・ゼルテンによって交渉問題の研究は飛躍的に進歩し、それらの業績によりハーサニとゼルテンは1994年にノーベル賞を受賞している[285]

1960年代にはジェームズ・ブキャナン1986年ノーベル賞受賞)を中心としたシカゴ・ヴァージニア学派によって「公共選択論」と呼ばれる分野が誕生した。彼らはゲーム理論を基礎として政党官僚、投票者などの政治的プレイヤーを分析した[286]

この他にも1960年代には米ソ間の軍縮交渉が行われていた時代背景から米国政府がモルゲンシュテルンが当時在籍していたMathematica研究所に関連研究を委託したため、動学ゲームの研究が急速に発展した。1966年から1968年の間、モルゲンシュテルンによってクーン、オーマン、マッシラー、スターンズ、ハルサニ、ゼルテン、デブリュー、スカーフ、メイベリらが招集され、不完備情報下における繰り返しゲームが盛んに研究された[287]。また、繰り返しゲーム以外でもルーファス・アイザックスの一連の研究によって「微分ゲーム」と呼ばれる新しい分野が誕生している(それら研究はIsaacs 1965にまとめられている)。微分ゲームは制御工学関連の人々を中心に盛んに研究されている[288]