組合せ論
![]() |
この節は検証可能な参考文献や出典が全く示されていないか、不十分です。出典を追加して記事の信頼性向上にご協力ください。(2013年5月) |
階乗を含む公式は数学の多くの分野に現れるけれども、階乗のおおもとの出自は組合せ論にある。相異なる n 個の対象の順列(k-順列)の総数は n! 通りである。
階乗はしばしば「順番を無視する」という事実を反映するものとして分母に現れる。古典的な例としては n 個の元から k 個の元を選ぶ組合せ(k-組合せ)の総数が挙げられる。このような組合せは順列から得ることができる。実際、k-順列の総数
- {\displaystyle n^{\underline {k}}=n(n-1)(n-2)\cdots (n-k+1)}
において、順番のみが違う(k-組合せでは違いが無視される)k-順列が k ! 通りずつ存在するから、k-組合せの総数は
- {\displaystyle {\frac {n^{\underline {k}}}{k!}}={\frac {n(n-1)(n-2)\cdots (n-k+1)}{k(k-1)(k-2)\cdots 1}}}
となる。この数は、二項冪 (1 + X)n における Xk の係数となることから、二項係数 {\displaystyle {\tbinom {n}{k}}} とも呼ばれる。
代数学に現れる階乗にはいくつも理由があるが、既述の如く二項展開の係数として現れたり、ある種の演算の対称化(英語版) において置換による平均化を行うなど、組合せ論的な理由で現れるものもある。
微分積分学においても階乗は例えばテイラー級数の分母として現れるが、これは冪函数 xn の n 階導函数が n ! であることを補正する定数である。確率論でも階乗は用いられる。
階乗は数式操作にも有効である。例えば n の k-順列の総数を
- {\displaystyle n^{\underline {k}}={\frac {n!}{(n-k)!}}}
と書けば、(この数値を計算することを考えれば効率が悪くなるが)二項係数の対称性
- {\displaystyle {\binom {n}{k}}={\frac {n^{\underline {k}}}{k!}}={\frac {n!}{(n-k)!k!}}={\frac {n^{\underline {n-k}}}{(n-k)!}}={\binom {n}{n-k}}}
を見るには都合がよい。