原子力事故 Ⅰ【初】目次原因と結果水素爆発水蒸気爆発冷却材…

 

 

臨界事故

詳細は「臨界事故」を参照

Question book-4.svg この節は検証可能参考文献や出典が全く示されていないか、不十分です。出典を追加して記事の信頼性向上にご協力ください。(2016年7月)

高濃度の放射性物質が集まり核反応が連鎖的に続く状態になることを臨界という。臨界が起こると、その場所から周囲に中性子が放射される。中性子は構造物を貫きやすく、通常の防護服や防護機材さえ貫通して、長距離(数百m - 数km以上)にわたって生物の細胞を損傷する。また、中性子により普通の原子が放射性原子に変化する中性子放射化が起こる。

原子力施設の停電

Question book-4.svg この節は検証可能参考文献や出典が全く示されていないか、不十分です。出典を追加して記事の信頼性向上にご協力ください。(2016年7月)

原子力施設の停電が問題である。電源が失われると冷却が出来なくなり、蒸発で水が失われ重大事故(冷却材喪失事故)となり、そのままだと炉心溶融の上で水蒸気爆発または水素爆発により大量の放射性物質が外部に漏れるおそれがある。また放射性物質貯蔵システムでも崩壊熱が出続けているため、当面の間(数年以上)は冷却の必要がある。電力が失われれば状況も不明になり、制御も困難となる。原子力施設における全電源喪失をステーションブラックアウト(Station Blackout、SBO)という。

原子力施設を支える命綱には通常、

  1. 所内交流電源系 : 他の原子炉につながっている
  2. 外部電源系 : 外部から引き入れているいわゆる普通の電力
  3. 非常用ディーゼル発電機
  4. 非常用バッテリー

の4系統がある。

原子炉保安指針では、電源喪失が起こっても送電設備や非常電源設備を修理して送電可能となることと、またその非常電源設備も直ちにかつ確実に電源供給を行える状態であることを挙げて、電源喪失が長期間にわたるケースの想定は不要だと謳っている[注釈 3]。しかし、広域かつ長時間にわたって外部電源系が停止した事例は必ずしも珍しくない[注釈・原子力施設の停電 1]

冷却パイプ

原子炉内部を冷却するパイプは、(1)細い、(2)薄い、(3)曲がっている、(4)中性子などに曝されている、(5)圧力が高い、(6)密集している、(7)ナトリウム冷却の場合は腐食性が高い(通常は徹底的に不純物を除いた水を用いる)、(8)施工不良などの悪条件が重なっている。経年変化、不純物、格子欠陥、振動、地震などの条件があると、設計寿命のかなり前に詰まったり破断したりする。定期検査によって全てのパイプを徹底検査できないため、事故の原因となり得る。挙動が複雑なので、固有振動の計算が困難で(設計時には可能だが、条件の変化が大きい。古い設計ではかなり省略して計算している)想定外のひずみや圧力の集中が起こり、ひび割れや破断が起きることがある。[要出典]

パイプの材質は万全ではない。エロージョン/コロージョン(壊食/腐食、E/C)により配管の厚みが減る内面減肉がパイプの一部に起こり(局部減肉)、穴が開いたり亀裂ができる。場所の予想は困難であり、年間数mmの速度であるので時期の予測も困難であり、検査漏れが大きな事故を招きやすい。これは炭素鋼の弱点であるが、低合金鋼で対処が困難な場合にオーステナイト系ステンレス鋼にすると応力腐食割れを起こす。この問題は火力発電所・石油化学・一般化学プラントなどと共通の未解決問題である[15]

ナトリウム事故

原子炉の熱を運び出し、タービンを回すための冷却剤として使われるのは通常、水(H2O、軽水ともいう)、重水 (D2O) であるが、液体金属ナトリウム (Na) が使用されることもある。しかし、液体ナトリウムは水分や空気に触れると爆発する性質を持ち、腐食性も高い。また、別の元素が混入すると硬化し冷却困難となる場合がある[要出典]

主な原子力事故

詳細は「原子力事故の一覧」を参照

日本

INESレベル7の事故

福島第一原子力発電所炉心溶融・水素爆発事故

詳細は「福島第一原子力発電所事故」を参照

2011年3月11日に発生した東北地方太平洋沖地震により、東京電力福島第一原子力発電所で圧力容器内の水位が低下。炉心が高温になるも、非常用電源の故障で緊急炉心冷却システムも作動せず、水蒸気爆発の可能性が高まった。そのため、弁を開いて放射性物質を含んだ水蒸気を大気中に放出した。この作業により、敷地境界域で1015 μSv/hの放射線を確認。燃料棒も一部溶解。日本初となる原子力緊急事態宣言が発令され、周辺半径20kmの住民には避難指示が出された[16]

経済産業省原子力安全・保安院は12日、国際原子力事故評価尺度 (INES) の暫定値で、「局所的な影響を伴う事故」とするレベル4に当たることを明らかにした。東海村JCO核燃料加工施設臨界事故と同レベル[17]。経済産業省原子力安全・保安院は1 - 3号機の事故の深刻さを示す国際評価尺度 (INES) を、8段階のうち3番目に深刻な「レベル5」にすると発表した[18]。その後、同年4月12日、経済産業省原子力安全・保安院は国際評価尺度 (INES) の暫定評価を「レベル7」にすると発表した[19]

  • 2011年11月30日、東京電力は炉心の解析状況を発表した[要出典]
    • 1号機・・14時間の断水で、燃料は3000度に達し、68tの燃料がすべて溶けて鋼鉄製の圧力容器を抜けて格納容器下部にたまった。
    • 2号機は57%、3号機は63%の燃料が格納容器外へ落下した可能性がある。

INESレベル4の事故

1999年9月30日 東海村JCO核燃料加工施設臨界事故[20]
日本で3番目の臨界事故で、作業員2名が死亡。

INESレベル3以下の事故

1978年11月2日 東京電力福島第一原子力発電所3号機事故
日本で最初の臨界事故とされる。
戻り弁の操作ミスで制御棒5本が抜け、午前3時から、出勤してきた副長が気付きゆっくり修正し終わる10時半までの7時間半、臨界が続いたとされる。
沸騰水型の原子炉で、弁操作の誤りで炉内圧力が高まり、制御棒が抜けるという本質的な弱点の事故。この情報は発電所内でも共有されず、同発電所でもその後繰り返され、他の原発でも(合計少なくとも6件)繰り返される。1999年志賀原発事故も防げたかも知れず、本質的な弱点なので、世界中の原子炉で起こっている可能性がある。
特に重要なのが、1991年5月31日の中部電力浜岡3号機の制御棒が同様に3本抜けた事故である。中部電力は1992年にマニュアルを改訂した。「国への報告はしなかったが、他電力へ報告した。」と主張した。
事故発生から29年後の2007年3月22日に発覚、公表された。東京電力は「当時は報告義務がなかった」と主張している。
1989年1月1日 東京電力福島第二原子力発電所3号機事故
原子炉再循環ポンプ内部が壊れ、炉心に多量の金属粉が流出した事故。レベル2。
1990年9月9日 東京電力福島第一原子力発電所3号機事故
主蒸気隔離弁を止めるピンが壊れた結果、原子炉圧力が上昇して「中性子束高」の信号により自動停止した。レベル2。
1991年2月9日 関西電力美浜発電所2号機事故[21]
蒸気発生器の伝熱細管の1本が破断し、55トンの一次冷却水が漏洩し、非常用炉心冷却装置 (ECCS) が作動した。レベル2。放出量0.6キュリー。
1991年4月4日 中部電力浜岡原子力発電所3号機事故
誤信号により原子炉給水量が減少し、原子炉が自動停止した。レベル2。
1997年3月11日 動力炉・核燃料開発事業団東海再処理施設アスファルト固化施設火災爆発事故
低レベル放射性物質をアスファルト固化する施設で火災発生、爆発。レベル3。
1999年6月18日 北陸電力志賀原子力発電所1号機事故
定期点検中に沸騰水型原子炉 (BWR) の弁操作の誤りで炉内の圧力が上昇し3本の制御棒が抜け、想定外で無制御臨界になり、スクラム信号が出たが、制御棒を挿入できず、手動で弁を操作するまで臨界が15分間続いた。点検前にスクラム用の窒素を全ての弁で抜いてあったというミスと、マニュアルで弁操作が開閉逆だったと言うのが、臨界になる主な原因であった。レベル1 - 3。
2011年3月11日 東京電力福島第二原子力発電所事故
東日本大震災による地震・津波で原子炉の冷却機能が一時不全状態に陥った事故。
原子力安全・保安院は2011年3月18日にINESレベル3であるとの暫定評価を下した。
2013年5月23日 J-PARC放射性同位体漏洩事故
J-PARCハドロン実験施設にて、装置の誤作動により管理区域内に漏洩した放射性同位体が、排気ファンを回すという人為的な行動によって管理区域外に漏洩した事故。
原子力規制委員会は、2013年5月27日に本件をINESレベル1に相当する事象と暫定的に評価した。

その他の事故

1973年3月 関西電力美浜発電所燃料棒破損
美浜一号炉において核燃料棒が折損する事故が発生したが、関西電力はこの事故を公表せず秘匿していた。この事故が明らかになったのは内部告発によるものである。
1974年9月1日 原子力船むつ」の放射線漏れ事故
1995年12月8日 動力炉・核燃料開発事業団高速増殖炉もんじゅナトリウム漏洩事故
2次主冷却系の温度計の鞘が折れ、ナトリウムが漏洩し燃焼した。レベル1。この事故により、もんじゅは15年近く経った2010年4月まで停止を余儀なくされた。
1998年2月22日 東京電力福島第一原子力発電所
第4号機の定期検査中、137本の制御棒のうちの34本が50分間、全体の25分の1(1ノッチ約15cm)抜けた。
2004年8月9日 関西電力美浜発電所3号機2次系配管破損事故
2次冷却系のタービン発電機付近の配管破損により高温高圧の水蒸気が多量に噴出。逃げ遅れた作業員5名が熱傷で死亡。レベル0+。
2007年7月16日 新潟県中越沖地震に伴う東京電力柏崎刈羽原子力発電所での一連の事故
同日発生した新潟県中越沖地震により、外部電源用の油冷式変圧器が火災を起こし、微量の放射性物質の漏洩が検出された。この地震により発生した火災は柏崎刈羽原子力発電所1箇所のみであるとされる。
震災後の高波によって敷地内が冠水、このため使用済み核燃料棒プールの冷却水が一部流失している。
全ての被害の詳細は2007年10月現在もなお調査中である。この事故により柏崎刈羽原子力発電所は全面停止を余儀なくされた。
2007年11月13日、経済産業省原子力安全・保安院はこの事故をレベル0-と評価した。
2010年6月17日 東京電力福島第一原子力発電所2号炉緊急自動停止
制御板補修工事のミスがあったが、常用系電源と非常用電源(常用系から供給されている)から外部電源に切り替わらず、冷却系ファンの停止をまねき、自動停止(トリップ)した。電源停止により水位が2m低下した。燃料棒露出まで40cm(単純計算で6分)であった。30分後に非常用ディーゼル発電機2台が動作し、原子炉隔離時冷却系[注釈 4]が動作し、水位は回復した[23]

カナダ

1952年12月12日 チョーク・リバー研究所事故
1947年にカナダオンタリオ州(オタワの北西150km)に建設された出力4.2万KWの実験用原子炉NRXの事故である。操作ミスで制御棒が引き抜かれ、1万キュリーまたは370テラベクレルの放射能を有する放射性物質が外部に漏れた[24]。後年、国際原子力事象評価尺度レベル5と判定された。[要出典]その後1993年まで稼働していた[24]

旧ソビエト連邦・ロシア

1957年9月29日 ウラル核惨事
ソビエト連邦ウラル地方に建設された「チェリャビンスク65」という暗号名を持つ秘密都市の、「マヤーク」(灯台の意味)という兵器(原子爆弾)用プルトニウムを生産するための原子炉5基および再処理施設を持つプラントで起こった事故。プルトニウムを含む200万キュリーの放射性物質が飛散した。放射性物質の大量貯蔵に伴う事故の危険性を知らせた事故である。原子力における冷却不能が(廃棄物であっても)爆発大事故につながった事故である。当初この事故は極秘とされていたが、西側亡命した科学者であるジョレス・A・メドベージェフが1976年に英科学誌「ニュー・サイエンティスト」に論文を掲載したことで知られるようになった。国際原子力事象評価尺度でレベル6の大事故であり、現在も放射能汚染は続いている。
1986年4月26日 チェルノブイリ原子力発電所事故
ソビエト連邦下のウクライナ共和国チェルノブイリ原発4号機が爆発・炎上し、多量の放射性物質が大気中に放出されたレベル7の大事故。原因は諸説あるが、発電実験中、出力が急上昇して起こったとされている。放射性物質は気流に乗って世界規模で被曝をもたらした。直接の死亡者は作業員・救助隊員の数十名だけである。しかし、2005年に発表された