Thu, January 30, 2014

万能細胞をPS陰陽論から説明してみる(作業仮説):刺激でMPを賦活し、氣を発動させ万能細胞を成形

テーマ:生命力/氣自衛医智学:唯物機械論医学批判
これは、PS陰陽論的に重要な発見である。
 陰陽方程式:陰凹i*陽凸i⇒±1において、±1を個々の体細胞と見ればいい。⇒は不可逆的な方向を意味する。だから、通常、体細胞は後戻りできない。
 しかしながら、実は、MP(メディア・ポイント)において、氣のイデア、氣の「量子」が働いていると考えられる。
 体細胞の酸性化の刺激によって、なんらかのエネルギーが体細胞にかけられると思われる。
 そこで、いわば、蓋してあったMPが開いて、氣の「量子」が賦活化されるのである。言い換えると、陰陽共振が発動するのである。それが実は、万能細胞を作るのではないだろうか。
 以下の説明では、植物では、非可逆的ではないといい、動物では不可逆的であると述べている。
 しかし、氣の「量子」の状態に戻すことで、いわば、植物状態が発生し、それが、万能細胞を成形するのではないだろうか。
 氣の「量子」と言ったが、いわば、氣子=陰陽子である。
 今はここで留めておく。
 
追記:陰陽方程式:陰凹i*陽凸i⇒±1であるが、上記では、体細胞は±1と言った。しかし、動物の場合、-1となるのであり、植物の場合が+1とこれまで考えてきたのである。
 つまり、動物の場合、陽が主導化して、-1の体細胞ができるとうように考えられる。しかし、酸性化によって、-1の体細胞がなんらか解体されて、MPが開いて、氣の発動を受けると考えることができる。つまり、陰陽共振である。これは、植物化であり、それは、⇒+1へと転化することになる。この+1が万能細胞と関係するのではないだろうか。


追記2:人間の場合、動物とは異なり、植物性へ傾斜していると私は考えている。つまり、陰陽方程式:陰凹i*陽凸i⇒±1の±1の両面を人体はもっていると考えられる。
 そうすると、万能細胞はマウスよりずっと作りやすいと考えられるのである。


理研など、動物の体細胞を万能細胞(多能性細胞)へと初期化する新手法を開発

理研など、動物の体細胞を万能細胞(多能性細胞)へと初期化する新手法を開発




デイビー日高   [2014/01/30]

理化学研究所(理研)は1月29日、米ハーバード大学との共同研究により、動物の体細胞における分化の記憶を消去し、万能細胞(多能性細胞)へと初 期化する原理を新たに発見し、それをもとに核移植や遺伝子導入などの従来の初期化法とは異なる「細胞外刺激による細胞ストレス」によって、短期間に効率よ く万能細胞を試験管内で作成する方法が開発されたと発表した。

成果は、理研 発生・再生科学総合研究センター 細胞リプログラミング研究ユニットの小保方晴子 研究ユニットリーダー、同・研究センターの若山照彦元チームリーダー(現・山梨大学教授)、ハーバード大のチャールズ・バカンティ教授らの国際共同研究 チームによるもの。研究の詳細な内容は、日本時間1月30日付けで英科学誌「Nature」に掲載された。

ヒトを含めたほ乳類動物の体は、血液細胞、筋肉細胞、神経細胞など多数多様な種類の体細胞(生殖細胞を除く)で構成されている。しかし、発生を遡る と、受精卵にたどり着く。受精卵が分裂して多種多様な種類の細胞に変化していき、体細胞の種類ごとにそれぞれ個性付けされることを「分化」という。

体細胞はいったん分化を完了すると、その細胞の種類の記憶=「分化状態」は固定される(画像1)。例えば、生体の心臓から細胞を取り出してシャーレ の中で培養しても心筋細胞は心筋細胞ままで、分化状態が保持されるという具合だ。つまり、細胞は自分が何の細胞であるかという記憶を保持しているのであ る。従って、分化した体細胞が別の種類の細胞へ変化する「分化転換」や、分化を逆転させて受精卵に近い「未分化状態」に逆戻りしたりする「初期化」は通常 は起こらないとされている。

動物の体細胞で初期化を引き起こすには、未受精卵への核移植を行うクローン技術や、未分化性を促進するタンパク質「転写因子」を作らせる遺伝子を細胞へ導入するiPS細胞技術など、細胞核の人為的な操作が必要になる(画像2)。

一方、植物では、分化状態の固定は必ずしも非可逆的ではないことが知られている。分化したニンジンの細胞をバラバラにして成長因子を加えると、カルスという未分化な細胞の塊を自然と作り、それらは茎や根などを含めたニンジンのすべての構造を作る能力を獲得する。

しかし、細胞外環境(細胞が置かれている環境)を変えるだけで未分化な細胞へ初期化することは、動物では起きないと一般に信じられてきた(画像 2)。そこで研究チームは今回、この通説に反して「特別な環境下では動物細胞でも自発的な初期化が起こりうる」という仮説を立て、その検証に挑んだのであ る。

画像1(左):多能性細胞と体細胞。画像2(右):細胞の分化状態の初期化に関する従来の考え方

研究チームはまずマウスのリンパ球を用いて、細胞外環境を変えることによる細胞の初期化を行う際の影響の解析を行った。リンパ球にさまざまな化学物 質の刺激や物理的な刺激を加えて、多能性細胞に特異的な遺伝子である「Oct4」の発現が誘導されるかを詳細に検討した。Oct4遺伝子は、ES細胞など の多能性細胞の未分化性を決定する転写因子であり、多能性のマーカータンパク質を作る遺伝子だ。Sox2、Klf4、L-Mycと共に「山中因子」と呼ば れる、iPS細胞の樹立にも必須の因子の1つだ。なお、解析の効率を上げるため、Oct4遺伝子の発現がオンになると緑色蛍光タンパク質「GFP」が発現 して蛍光を発するように遺伝子操作したマウス(Oct4::GFPマウス)のリンパ球を使用した。

こうした検討過程で、研究チームは酸性の溶液で細胞を刺激することが有効なことを発見。分化したリンパ球のみを分離した上、30分間ほどpH5.7 の酸性溶液に入れて培養(刺激)してから、多能性細胞の維持・増殖に必要な増殖因子である「LIF」を含む培養液で培養したところ、2日以内に初期化が始 まり、多能性マーカー(Oct4::GFP)の発現が認められた。7日目に多数のOct4陽性の細胞が出現し、それらの細胞は、細胞塊を形成した(画像 3)。

画像3。体細胞刺激による体細胞から多能性細胞への初期化

「酸性溶液処理」で多くの細胞が死滅し、7日目に生き残っていた細胞は当初の約5分の1に減ったが、生存細胞の内、3分の1から2分の1がOct4 陽性であることがわかったのである。ES細胞やiPS細胞などはサイズの小さい細胞だが、酸性溶液処理により生み出されたOct4陽性細胞はこれらの細胞 よりさらに小さく、数十個が集合して凝集塊を作る性質を持っていることが判明した。

次に行われた詳細な検討は、Oct4陽性細胞が、分化したリンパ球が初期化されたことで生じたのか、それともサンプルに含まれていた極めて未分化な 細胞が酸処理によって選択されたのかについてである。まず、Oct4陽性細胞の形成過程が「ライブイメージング法」(細胞などが生きた状態でリアルタイム に顕微鏡で観察する技術)によって解析され、すると酸性溶液処理を受けたリンパ球は2日後からOct4を発現し始め(画像3)、反対に当初発現していたリ ンパ球の分化マーカーの「CD45」が発現しなくなった。またこの時リンパ球は縮んで、直径5マイクロメートル前後の特徴的な小型の細胞に変化したのであ る。

次に、リンパ球の特性を活かして、遺伝子解析によりOct4陽性細胞を生み出した「元の細胞」の検証が行われた。リンパ球の内、T細胞は1度分化す ると「T細胞受容体遺伝子」に特徴的な組み替えが起こる。これを検出することで、細胞がT細胞に分化したことがあるかどうかがわかるというわけだ。この解 析から、Oct4陽性細胞は、分化したT細胞から酸性溶液処理により生み出されたことが判明したのである。

これらのことから、酸性溶液処理により出現したOct4陽性細胞は、一度T細胞に分化した細胞が「初期化」された結果生じたものであることがわかっ た。これらのOct4陽性細胞は、Oct4以外にも多能性細胞に特有の多くの遺伝子マーカー(Sox2、SSEA1、Nanogなど)を発現していたので ある(画像3)。また、DNAのメチル化状態もリンパ球型ではなく、多能性細胞に特有の型に変化していることが確認された。

産生されたOct4陽性細胞の検査が行われたところ、多様な体細胞に分化する能力も持っていることが判明。分化培養やマウス生体への皮下移植により、神経細胞などの外胚葉、筋肉細胞などの中胚葉、腸管上皮などの内胚葉の組織に分化することが確認された(画像4)。

さらに、「マウス胚盤胞(着床前胚)」に注入した後にマウスの仮親の子宮に戻されたところ、全身に注入細胞が寄与された「キメラマウス」を作成でき、そのマウスからはOct4陽性細胞由来の遺伝子を持つ次世代の子どもが生まれた(画像5)。

これらの結果は、酸性溶液処理によってリンパ球から産生されたOct4陽性細胞が、生殖細胞を含む体のすべての細胞に分化する能力を持っていること を明確に示しているという。研究チームは、このような細胞外刺激による体細胞からの多能性細胞への初期化現象を「刺激惹起性多能性獲得 (Stimulus-Triggered Acquisition of Pluripotency:STAP)」、生じた多能性細胞を「STAP細胞」と名付けた。

画像4(左):STAP細胞は多能性(3胚葉組織への分化能)を持つ。STAP細胞は、試験管内の分化系(上図、胚葉体形成法など)でも、マウスの皮下移 植による奇形腫形成法でも、外胚葉、中胚葉、内胚葉組織への分化が確認された。画像5(右):STAP細胞はキメラ形成能を有する。STAP細胞は、胚盤 胞(着床前胚)に移植することで、キメラマウスの多様な組織の細胞を生み出し、さらに生殖細胞形成にも寄与する。胎盤のみ形成し、胎仔を形成できない宿主 の胚盤胞を用いた場合、注入されたSTAP細胞のみから胎仔全体を形成することも示された

続いて検討されたのが、この現象がリンパ球という特別な細胞だけで起きるのか、あるいは幅広い種類の細胞でも起きるのかについてだ。脳、皮膚、骨格 筋、脂肪組織、骨髄、肺、肝臓、心筋などの組織の細胞をリンパ球と同様に酸性溶液で処理したところ、程度の差はあれ、いずれの組織の細胞からもOct4陽 性のSTAP細胞が産生されることがわかったのである。

また、酸性溶液処理以外の強い刺激でもSTAPによる初期化が起こるかについての検討も実施された。その結果、細胞に強いせん断力を加える物理的な 刺激(細いガラス管の中に細胞を多数回通すなど)や細胞膜に穴を開ける「ストレプトリシンO」という細胞毒素で処理する化学的な刺激など、強くしすぎると 細胞を死滅させてしまうような刺激を少しだけ弱めて細胞に加えることで、STAPによる初期化を引き起こすことができることがわかったのである。

STAP細胞は胚盤胞に注入することで、効率よくキメラマウスの体細胞へと分化する仕組みを持つ。この研究過程で、STAP細胞はマウスの胎児の組 織になるだけではなく、その胎児を保護し栄養を供給する胎盤や卵黄膜などの胚外組織にも分化していることが発見された(画像6)。

STAP細胞を増殖因子「FGF」を加えて数日間培養することで、胎盤への分化能がさらに強くなることも判明。一方、ES細胞やiPS細胞などの多 能性幹細胞は、胚盤胞に注入してもキメラマウスの組織には分化しても、胎盤などの胚外組織にはほとんど分化しないことが知られている。このことは、 STAP細胞が体細胞から初期化される際に、単にES細胞のような多能性細胞(胎児組織の形成能だけを有する)に脱分化するだけではなく、胎盤も形成でき るさらに未分化な細胞になったことを示唆するという。

画像6。STAP細胞は胎仔のみならず胎盤の形成能も有する

STAP細胞はこのように細胞外からの刺激だけで初期化された未分化細胞で、幅広い細胞への分化能を有している。一方で、ES細胞やiPS細胞など の多能性幹細胞とは異なり、試験管の中では、細胞分裂をして増殖することがほとんど起きない細胞で、大量に調製することが難しい面があるというわけだ。

研究チームは、理研によって開発された「副腎皮質刺激ホルモン」を含む多能性細胞用の特殊な培養液を用いることでSTAP細胞の増殖を促し、 STAP細胞からES細胞と同様の高い増殖性(自己複製能)を有する細胞株を得る方法も確立した(画像7)。この細胞株は、増殖能以外の点でもES細胞に 近い性質を有しており、キメラマウスの形成能などの多能性を示す一方、胎盤組織への分化能は失っていることが確認されている。

今回の研究で、細胞外からの刺激だけで体細胞を未分化な細胞へと初期化させるSTAPが発見された(画像8)。これは、これまでの細胞分化や動物発 生に関する常識を覆すものだ。STAP現象の発見は、細胞の分化制御に関するまったく新しい原理の存在を明らかにするものであり、幅広い生物学・医学にお いて、細胞分化の概念を大きく変革させることが考えられるという。

分化した体細胞は、これまで、運命付けされた分化状態が固定され、初期化することは自然には起き得ないと考えられてきた。しかし、STAPの発見 は、体細胞の中に「分化した動物の体細胞にも、運命付けされた分化状態の記憶を消去して多能性や胎盤形成能を有する未分化状態に回帰させるメカニズムが存 在すること」、また「外部刺激による強い細胞ストレス下でそのスイッチが入ること」を明らかにし、細胞の初期化に関する新しい概念を生み出したというわけ だ。

画像7(左):増殖性の高い幹細胞(STAP幹細胞)の樹立。ATCH(副腎皮質刺激ホルモン)を含む培養液で数日間培養することで、増殖能の高い幹細胞 (STAP幹細胞)へ転換される。画像8(右):研究成果のまとめと今後の展望。今回発見されたSTAPによる初期化は、まったく従来は想定していなかっ た現象である。その原理の解明は、幹細胞や再生医学のみならず幅広い医学生物学研究に変革をもたらすことが期待される。さらに、ヒト細胞への技術展開も今 後の課題

また、今回の研究成果は、多様な幹細胞技術の開発に繋がることが期待される。それは単に遺伝子導入なしに多能性幹細胞が作成できるということに留ま らない。STAPはまったく新しい原理に基づくものであり、例えば、iPS細胞の樹立とは違い、STAPによる初期化は非常に迅速に起こる。iPS細胞で は多能性細胞のコロニーの形成に2~3週間を要するが、STAPの場合、2日以内にOct4が発現し、3日目には複数の多能性マーカーが発現していること が確認済みだ。また、効率も非常に高く、生存細胞の3分の1~2分の1程度がSTAP細胞に変化している。

一方で、こうした効率の高さは、STAP細胞技術の一面を表しているにすぎない。研究チームは、STAPという新原理のさらなる解明を通して、これ までに存在しなかった画期的な細胞の操作技術の開発を目指すという。それは、「細胞の分化状態の記憶を自在に消去したり、書き換えたりする」ことを可能に する次世代の細胞操作技術であり、再生医学以外にも老化やがん、免疫などの幅広い研究に画期的な方法論を提供する(画像8)。

さらに、今回の発見で明らかになった体細胞自身の持つ内在的な初期化メカニズムの存在は、試験管内のみならず、生体内でも細胞の若返りや分化の初期 化などの転換ができる可能性をも示唆するという。理研の研究チームでは、STAP細胞技術のヒト細胞への適用を検討すると共に、STAPによる初期化メカ ニズムの原理解明を目指し、強力に研究を推進していくとしている。

http://news.mynavi.jp/news/2014/01/30/081/
マイナビニュース
AD
いいね!した人  |  コメント(0)  |  リブログ(0)

resurrectionさんの読者になろう

ブログの更新情報が受け取れて、アクセスが簡単になります

コメント

[コメントをする]

コメント投稿

AD

Ameba人気のブログ

Amebaトピックス

      ランキング

      • 総合
      • 新登場
      • 急上昇
      • トレンド

      ブログをはじめる

      たくさんの芸能人・有名人が
      書いているAmebaブログを
      無料で簡単にはじめることができます。

      公式トップブロガーへ応募

      多くの方にご紹介したいブログを
      執筆する方を「公式トップブロガー」
      として認定しております。

      芸能人・有名人ブログを開設

      Amebaブログでは、芸能人・有名人ブログを
      ご希望される著名人の方/事務所様を
      随時募集しております。